
MIGRATION RPG SCREEN
FORMAT REFERENCE
MANUAL

June 2011

Revision/Update Information: This revised manual supersedes the
Migration RPG Screen Format Reference
Guide, Version 7.3.

Operating System and Version: OpenVMS VAX Version 7.1 or higher

Operating System and Version: OpenVMS Alpha Version 7.3 or higher

Operating System and Version: OpenVMS Integrity Version 8.2 or higher

Software Version: Migration RPG Version 8.3 or higher

Migration Specialties International, Inc. Florence, Colorado

——————————

First Printing: October 1999
Revised: January 2001
Revised: March 2002
Revised: January 2005
Revised: December 2005
Revised: June 2011
——————————
The information in this document is subject to change without notice
and should not be construed as a commitment by MSI. MSI assumes no
responsibility for any errors that may appear in this document.
The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.
No responsibility is assumed for the use or reliability of this software by
MSI or its affiliated companies.
Restricted Rights: Use, duplication, or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013.
——————————

Copyright ©2011 by Migration Specialties International, Inc. (MSI)
217 W 2nd Street, Florence, CO, USA 81226-1403
Info@MigrationSpecialties.com, www.MigrationSpecialties.com
All Rights Reserved.
Printed in U.S.A.

——————————
The following are trademarks of MSI.
MSI, Migration RPG, SFG, S/3X Conversion Tools, CVTFILE, CBL
All other trademarks and registered names used in this document are the
property of their respective owners.

ii

Contents

PREFACE xiv

CHAPTER 1 OVERVIEW OF WORKSTN FILES 1–1

1.1 SCREEN FORMAT SPECIFICATIONS 1–1
1.1.1 Screen Format Files 1–1
1.1.2 Creating and Modifying Screen Formats 1–2

1.2 WORKSTN FILE LIMITATIONS 1–2

1.3 INTERACTING WITH RPG WORKSTATION PROGRAMS 1–2
1.3.1 Workstation Key Assignments 1–2

1.3.1.1 Function and Command Keys • 1–4
1.3.1.2 Field Editing Keys • 1–5

1.3.2 Field Editing Within An RPG Workstation Screen 1–6

1.4 HELP SUPPORT WITHIN AN RPG WORKSTATION PROGRAM 1–6

1.5 COLUMN SEPARATOR SIMULATION 1–7

1.6 WORKSTN EXAMPLE PROGRAMS 1–7

CHAPTER 2 WORKSTN FILES AND RPG PROGRAM SPECIFICATIONS 2–1

2.1 WORKSTN FILE SPECIFICATION 2–1
2.1.1 File Specification Entries 2–1

2.1.1.1 Columns 1 - 5 (Line Number) • 2–1
2.1.1.2 Column 6 (Specification Identification) • 2–2
2.1.1.3 Columns 7 - 14 (File Name) • 2–2
2.1.1.4 Column 15 (File Type) • 2–2
2.1.1.5 Column 16 (File Designation) • 2–2
2.1.1.6 Column 19 (File Format) • 2–2
2.1.1.7 Columns 24 - 27 (Record Length) • 2–3
2.1.1.8 Columns 40 - 46 (Device Code) • 2–3
2.1.1.9 Column 53 (Continuation Lines) • 2–3
2.1.1.10 Columns 71 - 72 (File Conditioning Indicator) • 2–3

iii

Contents

2.1.1.11 Columns 75 - 80 (Comments) • 2–4
2.1.2 Continuation Lines 2–4

2.1.2.1 Rules for Specifying a Continuation Line for a WORKSTN
File • 2–4

2.1.3 WORKSTN File Specification Example 2–6

2.2 WORKSTN INPUT SPECIFICATIONS 2–6
2.2.1 Input Record Specification Entries 2–6

2.2.1.1 Columns 1 - 5 (Line Number) • 2–6
2.2.1.2 Column 6 (Specification Identification) • 2–7
2.2.1.3 Columns 7 - 14 (File Name) • 2–7
2.2.1.4 Columns 14 - 16 (AND/OR) • 2–7
2.2.1.5 Columns 15 - 16 (Sequence) • 2–7
2.2.1.6 Column 17 (Sequence Number) • 2–7
2.2.1.7 Column 18 (Option) • 2–7
2.2.1.8 Columns 19 - 20 (Record-Identifying Indicator) • 2–7
2.2.1.9 Columns 21 - 41 (Record Identification Conditions) • 2–8
2.2.1.10 Column 42 - 70 (No-op) • 2–8
2.2.1.11 Columns 71 - 80 (Comments) • 2–8

2.2.2 Input Field Specification Entries 2–8
2.2.2.1 Columns 1 - 5 (Line Number) • 2–8
2.2.2.2 Column 6 (Specification Identification) • 2–8
2.2.2.3 Columns 7 - 42 (no-op) • 2–8
2.2.2.4 Column 43 (Data Format) • 2–8
2.2.2.5 Columns 44 - 47 and 48 - 51 (Field Start and End

Positions) • 2–8
2.2.2.6 Column 52 (Decimal Positions) • 2–9
2.2.2.7 Columns 53 - 58 (Field Name) • 2–9
2.2.2.8 Columns 59 - 60 (Control Break Indicator) • 2–9
2.2.2.9 Columns 61 - 62 (Matching Fields) • 2–9
2.2.2.10 Columns 63 - 64 (Field Record Relation Indicator) • 2–9
2.2.2.11 Columns 65 - 70 (Field Indicators) • 2–9
2.2.2.12 Columns 71 - 80 (Comments) • 2–9

2.2.3 First Cycle Read Processing of a WORKSTN Device 2–9
2.2.4 WORKSTN Input Example 2–10

2.3 WORKSTN CALCULATION SPECIFICATIONS 2–10

2.4 WORKSTN OUTPUT SPECIFICATIONS 2–10
2.4.1 Output Record Specifications 2–11

2.4.1.1 Columns 1 - 5 (Line Number) • 2–11
2.4.1.2 Column 6 (Specification Identification) • 2–11
2.4.1.3 Columns 7 - 14 (File Name) • 2–11
2.4.1.4 Columns 14 - 16 (AND/OR) • 2–11
2.4.1.5 Column 15 (Record Type) • 2–11
2.4.1.6 Columns 23 - 31 (Output Indicators) • 2–11
2.4.1.7 Columns 32 - 37 (EXCPT Name) • 2–12
2.4.1.8 Columns 37 - 70 (no-op) • 2–12

iv

Contents

2.4.1.9 Columns 71 - 80 (Comments) • 2–12
2.4.2 Output Field Specifications 2–12

2.4.2.1 Columns 1 - 5 (Line Number) • 2–12
2.4.2.2 Column 6 (Specification Identification) • 2–12
2.4.2.3 Columns 7 - 22 (no-op) • 2–12
2.4.2.4 Columns 23 - 31 (Output Indicators) • 2–12
2.4.2.5 Columns 32 - 37 (Field Name) • 2–12
2.4.2.5.1 Output Field Names • 2–12
2.4.2.5.2 Output Special Words • 2–13
2.4.2.6 Column 38 (Edit Codes) • 2–13
2.4.2.7 Column 39 (Blank After) • 2–13
2.4.2.8 Columns 40 - 43 (End Position in Output Record) • 2–13
2.4.2.9 Column 44 (Output Data Format) • 2–13
2.4.2.10 Columns 45 - 70 (Constant, Edit Word, or WORKSTN Screen

Format Name) • 2–13
2.4.2.10.1 WORKSTN Screen Format Name • 2–13
2.4.2.11 Columns 71 - 80 (Comments) • 2–14

CHAPTER 3 SCREEN SPECIFICATION 3–1

3.1 COLUMNS 1 - 5 (LINE NUMBER) 3–1

3.2 COLUMN 6 (SPECIFICATION IDENTIFICATION) 3–1

3.3 COLUMN 7 (COMMENT) 3–1

3.4 COLUMNS 7 - 14 (SCREEN FORMAT NAME) 3–1

3.5 COLUMNS 15 - 16 (RESERVED) 3–1

3.6 COLUMNS 17 - 18 (STARTING LINE NUMBER) 3–1

3.7 COLUMNS 19 - 20 (LINES TO CLEAR) 3–2

3.8 COLUMN 21 (ALLOW LOWERCASE) 3–2

3.9 COLUMN 22 (RETURN INPUT) 3–3

3.10 COLUMNS 23 - 24 (RESERVED) 3–3

v

Contents

3.11 COLUMNS 25 - 26 (SOUND ALARM) 3–3

3.12 COLUMN 27 (ENABLE FUNCTION KEYS) 3–3

3.13 COLUMN 28 (ENABLE COMMAND KEYS) 3–4

3.14 COLUMNS 29 - 30 (BLINK CURSOR) 3–4

3.15 COLUMNS 31 - 32 (ERASE INPUT FIELDS) 3–5

3.16 COLUMNS 33 - 34 (OVERRIDE FIELDS) 3–5

3.17 COLUMNS 35 - 36 (SUPPRESS INPUT) 3–6

3.18 COLUMNS 37 - 38 (RESERVED) 3–7

3.19 COLUMN 39 (132-COLUMN FORMAT) 3–7

3.20 COLUMN 40 (RIGHT-TO-LEFT DISPLAY) 3–7

3.21 COLUMNS 41 - 63 (RESERVED) 3–8

3.22 COLUMNS 64 - 79 (KEY MASK) 3–8

3.23 COLUMN 80 (RESERVED) 3–10

CHAPTER 4 HELP SPECIFICATION 4–1

4.1 COLUMNS 1 - 5 (LINE NUMBER) 4–1

4.2 COLUMN 6 (SPECIFICATION IDENTIFICATION) 4–1

4.3 COLUMN 7 (COMMENT) 4–1

vi

Contents

4.4 COLUMNS 7 - 14 (HELP SCREEN FORMAT NAME) 4–2

4.5 COLUMNS 15 - 33 (RESERVED) 4–2

4.6 COLUMNS 34 - 37 (UPPER LEFT BOUNDARY) 4–2

4.7 COLUMN 38 (RESERVED) 4–3

4.8 COLUMNS 39 - 42 (LOWER RIGHT BOUNDARY) 4–3

4.9 COLUMN 43 (RESERVED) 4–3

4.10 COLUMNS 44 - 45 (SUPPRESS SELECTION INDICATOR) 4–4

4.11 COLUMN 46 (RESERVED) 4–4

4.12 COLUMNS 47 - 48 (RESTORE APPLICATION FORMAT) 4–4

4.13 COLUMN 49 (RESERVED) 4–5

4.14 COLUMNS 50 - 51 (BOUNDARY INDICATOR) 4–5

4.15 COLUMNS 52 - 80 (RESERVED) 4–5

4.16 HELP SCREEN PROCESSING 4–5

4.17 HELP SPECIFICATION EXAMPLE 4–6

CHAPTER 5 DESCRIPTION SPECIFICATION 5–1

5.1 COLUMNS 1 - 5 (LINE NUMBER) 5–1

5.2 COLUMN 6 (SPECIFICATION IDENTIFICATION) 5–1

vii

Contents

5.3 COLUMN 7 (COMMENT) 5–1

5.4 COLUMNS 7 - 14 (FIELD NAME) 5–1

5.5 COLUMNS 15 - 18 (FIELD LENGTH) 5–2

5.6 COLUMNS 19 - 20 (LINE NUMBER OR ROW) 5–2

5.7 COLUMNS 21 - 22 (HORIZONTAL POSITION OR COLUMN) 5–2

5.8 COLUMNS 23 - 24 (OUTPUT DATA) 5–3

5.9 COLUMN 25 (RESERVED) 5–6

5.10 COLUMN 26 (INPUT DATA) 5–6

5.11 COLUMN 27 (DATA TYPE) 5–6

5.12 COLUMN 28 (MANDATORY FILL) 5–7

5.13 COLUMN 29 (MANDATORY ENTRY) 5–8

5.14 COLUMN 30 (SELF-CHECK) 5–8

5.15 COLUMN 31 (ADJUST/FILL) 5–9

5.16 COLUMNS 32 - 33 (POSITION CURSOR) 5–9

5.17 COLUMN 34 (ENABLE DUP) 5–10

5.18 COLUMN 35 (CONTROLLED FIELD EXIT) 5–10

5.19 COLUMN 36 (AUTO RECORD ENTER/ADVANCE) 5–10

viii

Contents

5.20 COLUMNS 37 - 38 (PROTECT FIELD) 5–11

5.21 COLUMNS 39 - 40 (HIGH INTENSITY) 5–11

5.22 COLUMNS 41 - 42 (BLINK FIELD) 5–12

5.23 COLUMNS 43 - 44 (NONDISPLAY FIELD) 5–12

5.24 COLUMNS 45 - 46 (REVERSE IMAGE) 5–12

5.25 COLUMNS 47 - 48 (UNDERLINE) 5–13

5.26 COLUMN 49 (COLUMN INDICATORS) 5–13

5.27 COLUMN 50 (RESERVED) 5–13

5.28 COLUMN 51 (LOWERCASE) 5–13

5.29 COLUMNS 52 - 55 (RESERVED) 5–14

5.30 COLUMN 56 (CONSTANT TYPE) 5–14

5.31 COLUMNS 57 - 79 (CONSTANT DATA) 5–14
5.31.1 Using MIC Message Members in Output Fields 5–15

5.32 COLUMN 80 (CONTINUATION) 5–16

5.33 USING SELF-CHECK FIELDS 5–16
5.33.1 Modulus 10 Self-Check 5–17
5.33.2 Modulus 11 Self-Check 5–17

CHAPTER 6 WORKSTN FILE PROCESSING 6–1

6.1 PRIMARY WORKSTN FILE 6–1

ix

Contents

6.2 DEMAND WORKSTN FILE 6–2

6.3 WORKSTN END-OF-FILE 6–2

CHAPTER 7 WORKSTN COMMAND AND FUNCTION KEYS 7–1

7.1 COMMAND KEYS 7–1
7.1.1 Defining Command Keys 7–2
7.1.2 Command Key Indicators 7–3
7.1.3 Command Keys and the INFDS Data Structure 7–3

7.2 FUNCTION KEYS 7–4
7.2.1 Defining Function Keys 7–4
7.2.2 Function Keys and the INFDS Data Structure 7–5

CHAPTER 8 INFDS DATA STRUCTURE 8–1

8.1 CODING THE INFDS DATA STRUCTURE 8–1
8.1.1 *STATUS Keyword 8–2
8.1.2 INFDS IBM Compatibility 8–2

8.1.2.1 *OPCODE Keyword • 8–2
8.1.2.2 *RECORD Keyword • 8–2
8.1.2.3 *SIZE • 8–2
8.1.2.4 *MODE • 8–3
8.1.2.5 *INP • 8–3
8.1.2.6 *OUT • 8–3
8.1.2.7 Return Code (Positions 23 - 26) • 8–3
8.1.2.8 IBM Compatible INFDS Data Structure • 8–3

8.2 USING AN INFDS DATA STRUCTURE 8–4

CHAPTER 9 INFSR SUBROUTINE 9–1

9.1 INFSR EXCEPTION PROCESSING 9–1
9.1.1 Coding INFSR Exception Return Options 9–1

x

Contents

CHAPTER 10 WORKSTN PROGRAM EXAMPLES 10–1

10.1 COMBINE DEMAND WORKSTN PROGRAM EXAMPLE 10–1
10.1.1 INVENT Example Components 10–2
10.1.2 INVENT.RPG Source Code 10–2
10.1.3 INVENTFM.FRM Screen Source Code 10–5
10.1.4 Building the INVENT Program 10–6

10.2 COMBINE PRIMARY WORKSTN PROGRAM EXAMPLE 10–7
10.2.1 INVENT_INQ Example Components 10–7
10.2.2 INVENT_INQ.RPG Source Code 10–8
10.2.3 INVENT_INQFM.FRM Screen Source Code 10–10
10.2.4 Building the INVENT_INQ Program 10–11

10.3 TEMPLATE EXAMPLES 10–12
10.3.1 TEMPLATE_INQ Example Components 10–12
10.3.2 TEMPLATE_MAINT Example Components 10–13

10.4 ADDRESS BOOK INTERACTIVE PROGRAM EXAMPLE 10–13
10.4.1 Address Book Example Components 10–13

INDEX

EXAMPLES
2–1 WORKSTN File and Continuation Specifications 2–6
2–2 WORKSTN Input Specifications 2–10
2–3 WORKSTN Output Specification 2–14
4–1 Help Specification Example 4–7
5–1 Constant Using Continuation Option 5–16
6–1 WORKSTN Combine Primary Output Specifications 6–1
6–2 WORKSTN Demand File Calculation Specifications 6–2
7–1 Defining all command keys as enabled 7–3
7–2 Defining all command keys as disabled 7–3
7–3 Defining selected command keys as enabled 7–3
7–4 Defining all function keys as enabled 7–4
7–5 Defining all function keys as disabled 7–5
7–6 Defining selected function keys as enabled 7–5
8–1 INFDS Data Structure Coding Example 8–1
8–2 IBM Compatible INFDS Data Structure 8–3

xi

Contents

8–3 INFDS Example: Roll Key Identification 8–4
9–1 INFSR Subroutine Code Example 9–2
10–1 INVENT.DAT Data file 10–1
10–2 Combine Demand WORKSTN Program Example - INVENT.RPG 10–2
10–3 WORKSTN Screen Example - INVENTFM.FRM 10–6
10–4 BUILD INVENT 10–7
10–5 Compile and Link INVENT 10–7
10–6 Combine Primary WORKSTN Program Example -

INVENT_INQ.RPG 10–9
10–7 WORKSTN Screen Example - INVENT_INQFM.FRM 10–11
10–8 BUILD INVENT_INQ 10–11
10–9 Compile and Link INVENT_INQ 10–12

FIGURES
1–1 Command Key Definition Diagram 1–4
1–2 VT Series Terminal Keypad Diagram 1–6
3–1 Indicator-based Output Data and Override 3–6

TABLES
1–1 Command and Function Key Definition Chart 1–3
1–2 Field Editing Keys 1–5
1–3 RPG Example Programs 1–8
2–1 Columns 71 - 72 (File Conditioning Indicator) 2–3
2–2 Continuation Line Format 2–4
2–3 WORKSTN File Continuation Options 2–5
3–1 Columns 17 - 18 (Starting Line Number) 3–2
3–2 Columns 19 - 20 (Lines To Clear) 3–2
3–3 Column 21 (Allow Lowercase) 3–2
3–4 Column 22 (Return Input) 3–3
3–5 Columns 25 - 26 (Sound Alarm) 3–3
3–6 Column 27 (Enable Function Keys) 3–4
3–7 Column 28 (Enable Command Keys) 3–4
3–8 Columns 29 - 30 (Blink Cursor) 3–4
3–9 Columns 31 - 32 (Erase Input Fields) 3–5
3–10 Columns 33 - 34 (Override Fields) 3–6
3–11 Columns 35 - 36 (Suppress Input) 3–7
3–12 Column 39 (132-Column Format) 3–7
3–13 Column 40 (Right-to-Left Display) 3–8
3–14 Columns 64 - 79 (Key Mask) 3–8
3–15 Command Key Mask Entries 3–9
3–16 Function Key Mask Entries 3–9
4–1 Columns 7 - 14 (Help Screen Format Name) 4–2

xii

Contents

4–2 100 to 132 Two Digit Representation 4–3
4–3 Columns 44 - 45 (Suppress Selection Indicator) 4–4
4–4 Columns 47 - 48 (Restore Application Format) 4–4
4–5 Columns 50 - 51 (Boundary Indicator) 4–5
5–1 Two Digit Representation of 100 to 132 5–3
5–2 Columns 23 - 24 (Output Data) 5–3
5–3 Output Control Based on Y in Columns 23 - 24 5–4
5–4 Output Control Based on Indicator in Columns 23 - 24 5–5
5–5 Column 26 (Input Data) 5–6
5–6 Column 27 (Data Type) 5–7
5–7 Column 28 (Mandatory Fill) 5–8
5–8 Column 29 (Mandatory Entry) 5–8
5–9 Column 31 (Self-Check) 5–8
5–10 Column 31 (Adjust/Fill) 5–9
5–11 Columns 32 - 33 (Position Cursor) 5–9
5–12 Column 34 (Enable Dup) 5–10
5–13 Column 35 (Controlled Field Exit) 5–10
5–14 Column 36 (Auto Record Enter/Advance) 5–11
5–15 Columns 37 - 38 (Protect Field) 5–11
5–16 Columns 39 - 40 (High Intensity) 5–11
5–17 Columns 41 - 42 (Blink Field) 5–12
5–18 Columns 43 - 44 (Nondisplay Field) 5–12
5–19 Columns 45 - 46 (Reverse Image) 5–12
5–20 Columns 47 - 48 (Underline) 5–13
5–21 Column 49 (Column Indicators) 5–13
5–22 Column 51 (Lowercase) 5–14
5–23 Column 56 (Constant Type) 5–14
5–24 Columns 57 - 79 (Constant Data) 5–15
5–25 MIC Message Member ID Codes 5–15
7–1 Command Keys 7–2
7–2 Function Keys 7–4
7–3 INFDS Function Key Codes 7–5
8–1 *STATUS Codes 8–2
9–1 INFSR Return Options 9–1
10–1 INVENT Program Files 10–2
10–2 INVENT_INQ Program Files 10–8
10–3 TEMPLATE_INQ Program Files 10–12
10–4 TEMPLATE_MAINT Program Files 10–13
10–5 Address Book Program Files 10–13

xiii

Preface

This manual describes the features, uses, constructs, and syntax of
interactive programming using the Migration RPG programming language
on OpenVMS systems.

Intended Audience
The Migration RPG Screen Format Reference Manual is intended for
programmers who are familiar with computer concepts and the RPG II
programming language. Migration RPG was originally developed for users
moving from IBM® System/36™ platforms to OpenVMS systems and was
modeled after IBM System/36 RPG II. It has since been enhanced beyond
the scope of IBM System/36 RPG II to provide a more generic and complete
RPG environment under the OpenVMS operating system. Migration RPG
still maintains a high degree of IBM System/36 compatibility.

This manual is designed to be used as a reference manual.

Conventions Used In This Manual
The following conventions are used in this manual to describe commands
and keystrokes:

Convention Meaning

CTRL/X This sequence indicates that the user must hold down
the key labeled CTRL while pressing another key.

PF1 + X This sequence indicates that the user must first press
and release the key labeled PF1, then press and release
another key.

RETURN or <RETURN> A key name is shown enclosed or within angle brackets
to indicate a key on the keyboard to be pressed by the
user.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format. The items are
omitted because they are not important to the topic being
discussed.

() In format descriptions, parentheses indicate that, if more
than one option is chosen, the options must be enclosed
in parentheses.

[] In format descriptions, optional parameters in a
command are denoted by square brackets. If a
command delimiter, such as a comma or slash, is
included within the square brackets, it is also optional. If
the delimiter is outside the square brackets, it is required
in the command line. Never include the square brackets
in the command line.

xiv

Preface

Convention Meaning

BOLDFACED TEXT Commands entered by the user at the terminal are
printed in boldfaced type.

Associated Documents
Additional information concerning Migration RPG can be found in the
following manuals:

• Migration RPG User’s Guide

• Migration RPG Language Reference Manual

Additional information concerning the use of OpenVMS with Migration
RPG programs can be found in the following manuals:

• Guide to Using OpenVMS Command Procedures

• OpenVMS Convert and Convert/Reclaim Utility Manual

• OpenVMS DCL Concepts Manual

• OpenVMS DCL Dictionary

• Guide to OpenVMS File Applications

• OpenVMS File Definition Language Facility Manual

• Guide to OpenVMS Files and Devices

• OpenVMS Librarian Utility Manual

• OpenVMS Linker Utility Manual

• Guide to Using OpenVMS

• Introduction to OpenVMS

• OpenVMS Sort/Merge Utility Manual

Additional information concerning the conversion of IBM® System/36™
RPG applications to an OpenVMS system can be found in the following
manuals:

• OpenVMS S/3X Conversion Assistance Manual

• OpenVMS S/3X Conversion Tools User’s Guide

Additional information concerning RPG programming can be found in the
following books:

• Computer Programming - RPG II, by Gary B. Shelly & Thomas J.
Cashman

• RPG and RPG II Programming; Applied Fundamentals, A Job
Approach to Learning, by Willian E. Bux & Edward C. Cunningham

• RPG II Programming, by Edward L. Essick

A special thanks to Kathy T. Parker and Gail Claremont for proofing this
manual.

xv

1 Overview of WORKSTN Files

WORKSTN files allow a user to use a Migration RPG program to
interactively view and enter data via a computer terminal (CRT).
Interactive Migration RPG programs have two parts: (1) language syntax
in the Migration RPG program that defines the WORKSTN file, and (2)
screen format(s) outside of the Migration RPG program that define the
appearance of the interactive screens with which the user interfaces.
Screen formats are defined in a screen format file. The screen format file
is compiled by the Screen Format Generator (SFG) and is linked with the
RPG WORKSTN program. A screen format is composed of Screen (S),
Help (H), and Description (D) specifications.

Migration RPG interactive screens are optimized for display on VTxxx
style terminals and terminal emulators. Migration RPG WORKSTN
programs treat the display like a block mode device. The RPG program
sends a record to the WORKSTN device for display. The WORKSTN device
returns a record to the program for processing. Hence, I/O to a WORKSTN
device is very much like I/O to a standard DISK file.

1.1 Screen Format Specifications
Migration RPG WORKSTN screen formats are described using Screen
(S), Help (H), and Description (D) specifications. These specifications are
created and maintained in a screen format source file, which is maintained
separately from the Migration RPG source file.

Screen formats can contain constant data, output only fields, input only
fields, and input-output fields. Display attributes such as highlighting,
blinking, underlining, and bolding are provided. Field format and exit
control attributes are available for input fields. Data output and attributes
can be conditioned by the RPG program indicators 01 - 99. Limited data
input validation is also available.

Migration RPG screens also provide the means to code help facilities via
Help specifications. Help displays can be keyed to screens, portions of
screens, or individual fields.

1.1.1 Screen Format Files
Screen format files typically use a .FRM extension. It is customary to use
the following naming convention with screen format files:

program-nameFM.FRM

For example, the screen format file associated with the RPG program
ADDRESS_BOOK.RPG would be ADDRESS_BOOKFM.FRM. See the
Migration RPG User’s Guide for more information concerning screen
format file naming conventions.

1–1

Overview of WORKSTN Files

1.1.2 Creating and Modifying Screen Formats
Screen format files can be created using the Migration RPG RED
editor or any other text editor. The RED editor has Screen, Help, and
Description specifications included within the editor to make building
screen specifications as easy as possible. The Migration RPG User’s Guide
contains more information on the RED editor.

1.2 WORKSTN File Limitations
An RPG program can define and use only one WORKSTN file. If a
program uses a WORKSTN file, it cannot use a KEYBORD, CRT, or
CONSOLE file.

Use of the DSPLY opcode and a WORKSTN file in the same program can
produce undesirable run-time results on the screen. Displayed information
can become mixed and garbled because the WORKSTN and DSPLY screen
handling mechanisms are unaware of each other and do not coordinate
display actions. Concurrent use of a WORKSTN file and the DSPLY
opcode in an RPG program is discouraged.

1.3 Interacting with RPG Workstation Programs
Users can interact with Migration RPG programs using the keys and
command sequences described in the following sections. These sections
detail workstation keyboard mapping, field editing, and characteristics of
Migration RPG interactive programs.

Interactive RPG terminal support is available on all VT series terminals
and terminal emulators. Support is also available for terminals and
devices using DECwindows or Motif via a DECterm window.

1.3.1 Workstation Key Assignments
The following keys have been defined for Migration RPG WORKSTN
programs. These key definitions cannot be modified or changed when
using a VT series terminal. However, VT series terminal emulation
software generally allows keyboard remapping.

If Migration RPG key mapping is altered using terminal emulation
software, be sure that the command sequences sent to the program match
those used for a standard VT series terminal.

1–2

Overview of WORKSTN Files

Table 1–1 Command and Function Key Definition Chart

Command Keystroke(s)

Clear PF1 + C

Command 1 - 12 PF1 followed by 1-9, 0, -, =

Command 13 - 24 PF1 followed by !, @, #, $, %, ^, &, *, (,), _, +

DUP PF3

ENTER/REC ADV PF4

Help Help or PF2 or PF1 + H

Home PF1 + T

Print PF1 + P

Roll Up Next Screen or PF1 + U

Roll Down Prev Screen or PF1 + D

1–3

Overview of WORKSTN Files

1.3.1.1 Function and Command Keys
This diagram displays the command keys and their associated indicators
as they would be used on a standard LK201 or LK401 keyboard. To enter
a Command 7 (Cmd7), turning on the KG indicator, the user would use the
following key strokes:

PF1 + 7

To enter a Command 15(Cmd15), turning on the KP indicator:

PF1 + Shift / 3

Figure 1–1 Command Key Definition Diagram

Command Keys − (1 − 12)

CMD1 CMD3 CMD5 CMD7 CMD9 CMD11
CMD2 CMD4 CMD6 CMD8 CMD10 CMD12

PF1 AND

AND

1 2 3 5 6 7 8 9 0 − =

KA KB KC KD KE KF KG KH KI KJ KK KL

CMD23
CMD22 CMD24

9 0 − =

KM KN KP KQ KR KS KT KU KV KW KX KY

4

1 3 5 72 4 6 8PF1

CMD14
CMD15

CMD16
CMD17

CMD18
CMD19

CMD20
CMD21

Shift

Command Keys − (13 − 24)

CMD13

1–4

Overview of WORKSTN Files

1.3.1.2 Field Editing Keys

Table 1–2 Field Editing Keys

Keystroke Function

Up Arrow Field exit and position cursor at first input enabled field
on previous line.

Down Arrow Field exit and position cursor at first input enabled field
on next line.

Left Arrow Within a field: Move cursor one position to the left.

At beginning of field: Position cursor at the beginning
of previous input enabled field.

Right Arrow Within a field: Move cursor one position to the right.

At end of field: Position cursor at the beginning of
the next input enabled field.

LF or F13 Clear field.

RETURN or ENTER Field Exit key. Any data to the right of the cursor is
deleted.

PF1 + RETURN
or

PF1 + ENTER

Field Minus Key. Can only be used on fields defined as
signed numeric. Enters the numeric field as a negative
number and places a minus sign at the end of the field.

TAB Field Advance. Advances cursor to next input enabled
field on the screen.

BACKSPACE or F12 Field Backup. Current field is exited and the cursor is
positioned at the beginning of the previous input enabled
field.

CTRL/A Toggles the terminal between overstrike and insert mode
for character entry. If the last character in a field is
not blank, the terminal will not switch to insert mode.
When the last character in a field is filled, the terminal
will default to overstrike mode. If CTRL/A is entered
and the terminal is already in insert mode, it is switched
back to overstrike mode. The terminal always defaults to
overstrike mode when entering a new field.

CTRL/W Screen Refresh Key. This command will cause the CRT
screen to be cleared and repainted with the contents of
the current screen.

VT series terminal keypads can also be used to enter Command Keys 0 -
11, as well as several of the Function keys. The keypads are defined as
numeric within the context of the RPG program and can be used to enter
numeric data. The following diagram displays the commands available on
the keypad.

1–5

Overview of WORKSTN Files

Figure 1–2 VT Series Terminal Keypad Diagram

PF1 PF2 PF3

DUP

PF4
Enter/
Record
Advance

Command Help

7 8 9 −

(Cmd 8) (Cmd 9)

ENTER

0

(Cmd 10) (Field −)

(Cmd 11)(Cmd 7)

4 5 6 ,

(Cmd 5) (Cmd 6)

Field +

(Cmd 4)

1 2 3

(Cmd 2) (Cmd 3)(Cmd 1)

.

The functions enclosed in parentheses are activated by first entering
a Command (<PF1>) Key, followed by the desired function key. The
command keys 12 - 24 are located on the standard keyboard as the
characters =, !, @, #, $, %, ^, &, *, (,), _, and +, respectively.

1.3.2 Field Editing Within An RPG Workstation Screen
Editing of characters entered in a data field on a workstation screen takes
place as the characters are keyed in by the user. The system will not
accept invalid characters into a data field. For example, if a user attempts
to key the character ‘A’ in a field defined as numeric (N in column 27
of the Description specification), the terminal bell will sound, the cursor
will remain at the same position in the field, and the character will not
be accepted by the data entry screen. The invalid character will remain
displayed on the screen and the user will be able to key over it.

Invalid command and function keys are treated as field exit keys. A bell
will sound and the cursor will be repositioned at the beginning of the field.

1.4 Help Support Within An RPG Workstation Program
RPG Help specifications are supported by Migration RPG. Help screen
definitions must be included within the screen specification source file.
The Screen Format Generator, as it compiles the Screen and Description
specifications, will compile the help screens along with the data screens.
Thus, the screen object module linked to the RPG workstation program
will include the referenced help screens.

1–6

Overview of WORKSTN Files

To access help screens from a workstation program, press either the
<HELP> key, the <PF2> key on the numeric keypad, or the <PF1> key
followed by the <H> key. The help screen defined for the screen location
at which the cursor currently resides will be displayed. Depending upon
the completion options defined in the help screen, the initial screen will be
redisplayed and a prompt for input will occur, or control will be returned
to the RPG workstation program.

See Chapter 4, Help Specification, for more information on Help screen
specifications.

1.5 Column Separator Simulation
Description specifications can specify that column separators be used in
a field (i.e., column 49 = Y). On a System/34 or System/36 using a 5251
display station, column separators are displayed using a vertical bar
on either side of the column. The column separator bars do not require
additional character positions on the 5251 display. This type of column
separator display is not possible on a VT series terminal. Migration RPG
simulates column separators by initializing each column to an underscore
character ("_").

1.6 WORKSTN Example Programs
The Migration RPG Compiler Kit contains the following RPG WORKSTN
program examples. These programs are used in the examples throughout
this manual. The programs can be located in the S3X$EXAMPLES
directory. It is recommended that the programs be copied to a different
directory before working with them.

1–7

Overview of WORKSTN Files

Table 1–3 RPG Example Programs

RPG Program Screen Format File Description

ADDRESS_BOOK.RPG ADDRESS_BOOKFM.FRM Interactive address book
program. The program
uses READ and
EXCPT statements to
control input and output
to the WORKSTN
device.

INVENT.RPG INVENTFM.FRM Simple interactive
inventory program. The
program uses READ
statements to control
WORKSTN input and
EXCPT statements
to control WORKSTN
output.

INVENT_INQ.RPG INVENT_INQFM.FRM Simple interactive
inventory inquiry
program. The program
uses the RPG cycle to
control WORKSTN input
and output.

TEMPLATE_INQ.RPG TEMPLATE_INQFM.FRM Interactive RPG file
query program. This
program template
can be used to build
interactive RPG file
query programs.

TEMPLATE_MAINT.RPG TEMPLATE_MAINTFM.FRM Interactive RPG file
maintenance program.
This program template
can be used to build
interactive RPG file
maintenance programs.

1–8

2 WORKSTN Files and RPG Program Specifications

Migration RPG handles WORKSTN files much like any other primary
or demand input file. The coding in an RPG program for a WORKSTN
file is similar to the coding for a DISK input file. WORKSTN files make
use of File, Input, Calculation, and Output specifications. This chapter
discusses the entries used in each RPG specification type to define and use
a WORKSTN file.

2.1 WORKSTN File Specification
The File Description specification is used to describe the files accessed by
an RPG program. Since a WORKSTN device is treated like a file by the
RPG program, it uses a File Description specification to define the device.
The WORKSTN File specification describes the following attributes of the
WORKSTN file:

• File name

• File type

• File designation

• File format

• Record length

• Device type

• Continuation lines

Only one WORKSTN device can be defined in an RPG program.
WORKSTN, CONSOLE, CRT, and KEYBORD devices cannot co-exist
in the same program. It is strongly advised that the DSPLY opcode not be
used in WORKSTN programs.

2.1.1 File Specification Entries
The following sections describe the entries permitted in a WORKSTN
File specification. For a detailed description of all possible entries in a
File specification, see the Migration RPG Language Reference Manual.
Columns that are not specifically covered in the following sections should
be left blank when defining a WORKSTN file.

2.1.1.1 Columns 1 - 5 (Line Number)
Columns 1 - 5 can be blank, specify a line number to assist in sequencing
the program specifications, or can be used as a comment. Columns 1 - 5
are ignored by the compiler.

2–1

WORKSTN Files and RPG Program Specifications

2.1.1.2 Column 6 (Specification Identification)
Column 6 must always contain an F to identify a File specification.

2.1.1.3 Columns 7 - 14 (File Name)
Columns 7 - 14 are used to assign a file name to the WORKSTN device.

The file name must begin in column 7 with an alphabetic character (A - Z).
It can be 1 to 8 characters in length. The remaining characters can be
A - Z, 0 - 9, $, or an underscore (_). The WORKSTN file name must be
unique.

Unlike a data file, a logical name cannot be associated with the
WORKSTN file name specified in columns 7 - 14. A WORKSTN device
always points to the input and output user logicals SYS$COMMAND and
SYS$OUTPUT.

Migration RPG allows a maximum of 98 files, including one WORKSTN
file, to be open in a single program. The number of files a user can open
depends on the open file quota set in the user’s UAF 1 record by the
system manager. To determine the number of files a user can have open
at any one time, review the file quota entry in the UAF file or enter the
SHOW PROCESS/QUOTA command from the user’s process and look at
the number to the right of Open File Quota. The default file quota on most
OpenVMS systems is 15 open files.

2.1.1.4 Column 15 (File Type)
WORKSTN files must include the letter C in column 15 for the file type to
indicate that the file is a combine input and output file.

2.1.1.5 Column 16 (File Designation)
Column 16 must contain a P (primary) or D (demand) to indicate how the
program accesses the WORKSTN file.

If the WORKSTN file is defined as primary, the file is automatically
read during the input phase of the RPG logic cycle. Record identifying
indicators are set off at input time in the logic cycle. If the WORKSTN file
is designated as primary, no secondary files are allowed in the program.

If the WORKSTN file is defined as demand, the READ opcode must
be used within the Calculation specifications to read data from the
WORKSTN device. Record identifying indicators are not set off when
a READ operation occurs.

WORKSTN screens for both primary and demand WORKSTN files can
be output using the output phase of the RPG logic cycle or by using the
EXCPT opcode.

2.1.1.6 Column 19 (File Format)
Column 19 is used to specify the file format. A WORKSTN file always
uses a fixed-length format. The entry in column 19 for a WORKSTN file
must be F or blank.

1 User Authorization File

2–2

WORKSTN Files and RPG Program Specifications

2.1.1.7 Columns 24 - 27 (Record Length)
Columns 24 - 27 are used to specify the record length of the fixed-length
WORKSTN file. Record length entries must be right-justified and numeric.
Leading zeros are optional. The WORKSTN record length should be equal
to or greater than the longest WORKSTN input or output record. The
maximum record length is 9999.

2.1.1.8 Columns 40 - 46 (Device Code)
Columns 40 - 46 must contain the device name WORKSTN.

2.1.1.9 Column 53 (Continuation Lines)
Column 53 is used to indicate a continuation line associated to the
WORKSTN File specification. Continuation lines are optional. Columns
7 - 52 of a continuation line are blank. Section 2.1.2, Continuation Lines,
discusses continuation lines in detail.

WORKSTN continuation lines must immediately follow the WORKSTN
specification line.

2.1.1.10 Columns 71 - 72 (File Conditioning Indicator)
Columns 71 - 72 can be used to specify an external indicator (U1 - U8)
which conditions access to the WORKSTN device. If the indicator is off
when the program is initialized, the WORKSTN file is set to end-of-file
and is ignored.

Table 2–1 Columns 71 - 72 (File Conditioning Indicator)

Entry Explanation

Blank The file is not conditioned by an external indicator.

U1 - U8 The file is conditioned by the specified external indicator. If the indicator
is off, the file is processed normally. If the indicator is on, the file
is set to an end-of-file condition and ignored by the program. If the
conditioning indicator is on, no records are processed from the file.

External indicators can be set within a program or a command procedure.
See the Migration RPG User’s Guide and Migration RPG Language
Reference Manual for more information concerning external indicators.

When a program is initialized, conditioning indicators are evaluated and
access is granted or denied to the associated file. If the external indicator
is later set on within the program, it has no effect on file access. The only
exception to this rule is if the program in question is an RPG subprogram.
It is possible to modify external indicators settings within a subprogram,
exit the subprogram, then initialize and call the subprogram again. The
subprogram would re-evaluate the updated external indicators and access
its files accordingly. See the Migration RPG Language Reference Manual
for more information concerning RPG subprograms.

If a WORKSTN file is conditioned by an external indicator, all associated
operations within the Calculation specifications should also be conditioned
by the same indicator.

2–3

WORKSTN Files and RPG Program Specifications

2.1.1.11 Columns 75 - 80 (Comments)
Column 75 and beyond can be used for comments. The compiler will
ignore any entries in these columns.

2.1.2 Continuation Lines
A WORKSTN File specification can be immediately followed by one or
more continuation lines. Continuation lines provide additional information
concerning the WORKSTN device.

Continuation lines are defined by inserting a K in column 53 of the
following File specifications. Continuation lines must immediately follow
the WORKSTN specification. The only fields available for use on a
continuation line are columns 53 through 67. The following continuation
line format is accepted by Migration RPG.

Table 2–2 Continuation Line Format

Column Contents

53 K

54-59 Option name

60-67 Value

2.1.2.1 Rules for Specifying a Continuation Line for a WORKSTN File
A WORKSTN file can have 1 to 8 continuation lines associated with
it. These specifications are used to pass information between the RPG
program and the WORKSTN screen and to specify the INFDS data
structure and INFSR exception handling routine.

2–4

WORKSTN Files and RPG Program Specifications

Table 2–3 WORKSTN File Continuation Options

Option
Columns 54 - 59

Entry
Columns 60 - 67

FMTS Specifies the name of the screen format file containing the
screens used by the program. The entry can be up to 8
characters long, running from columns 60 - 67. This entry
is ignored by the Migration RPG compiler and is supported
for compatibility purposes with non-OpenVMS versions of
the RPG programming language. However, the BUILD
procedure provided with the Migration RPG Compiler Kit will
process the FMTS continuation line. See the description of
the BUILD procedure in the Migration RPG User’s Guide for
more information on the BUILD procedure.

ID A two-character, alphanumeric field identifying the terminal
or WORKSTN from which the program is running. See the
Migration RPG User’s Guide for information on establishing
and changing WORKSTN ID’s.

IND This function has no meaning under Migration RPG. It is
supported for compatibility purposes with non-OpenVMS
versions of the RPG programming language. The Migration
RPG compiler will ignore IND continuation lines.

INFDS The name of a data structure which will receive information
from a WORKSTN screen concerning its return status and
any exceptions processed. The data structure must be
defined in the Input specifications. The INFDS data structure
is described in detail in Chapter 8, INFDS Data Structure.

INFSR Name of the exception handling subroutine. This subroutine
must be defined in the Calculation specifications. The
INFSR subroutine is called if an exception occurs during
a WORKSTN read and no other error trapping has been
specified for the read. The INFSR subroutine is described in
detail in Chapter 9, INFSR Subroutine.

NUM This function has no meaning under Migration RPG. It is
supported for compatibility purposes with non-OpenVMS
versions of the RPG programming language. The Migration
RPG compiler will ignore NUM continuation lines.

SAVDS This function has no meaning under Migration RPG. It is
supported for compatibility purposes with non-OpenVMS
versions of the RPG programming language. The Migration
RPG compiler will ignore SAVDS continuation lines.

SLN A 2-digit, 0-decimal, numeric field which is passed to the
screen format file. The SLN field defines the starting line
for a variable start line screen (V coded in column 17 of the
Screen specification). The start line field must be defined
within the RPG program. If a variable start line number is not
specified, all screens having a variable start line will start on
line 01.

2–5

WORKSTN Files and RPG Program Specifications

2.1.3 WORKSTN File Specification Example

Example 2–1 WORKSTN File and Continuation Specifications

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
FWORKSTN CP F 167 WORKSTN
F KFMTS MNVACFM
F KINFSR INFSR
F KINFDS INFDS
F KSLN SL

This example shows a WORKSTN file defined as a combine primary file.
The WORKSTN file has FMTS, INFSR, INFDS, and SLN continuation
specifications associated with it.

2.2 WORKSTN Input Specifications
Migration RPG Input specifications are used to describe the input records
and fields associated with a WORKSTN file. The Input specifications
extract data from the WORKSTN record buffer and set any record
identifying indicators on. Input specifications for a WORKSTN file are
no different than Input specifications for any other DISK device input
file. Input specifications are described in detail in the Migration RPG
Language Reference Manual.

The WORKSTN Input specification describes the WORKSTN input
records. The specifications can be divided into two categories:

• File and record descriptions. Columns 7 - 42 describe the file and its
records.

• Field descriptions. Columns 43 - 74 describe the fields in each record.

2.2.1 Input Record Specification Entries
The following sections describe the entries permitted in a WORKSTN
Input record specification. For a detailed description of all possible entries
in a Input record specification, see the Migration RPG Language Reference
Manual.

2.2.1.1 Columns 1 - 5 (Line Number)
Columns 1 - 5 can be blank, specify a line number to assist in sequencing
the program specifications, or can be used as a comment. Columns 1 - 5
are ignored by the compiler.

2–6

WORKSTN Files and RPG Program Specifications

2.2.1.2 Column 6 (Specification Identification)
Column 6 must always contain an I to identify an Input specification.

2.2.1.3 Columns 7 - 14 (File Name)
Columns 7 - 14 must contain the WORKSTN file name. This is the same
name that appears in columns 7 - 14 of the WORKSTN File specification.

If this entry is blank, the compiler will assume that the information in
this line describes a record from the last file named in an Input record
specification. All records and fields associated with one file should be
described in one contiguous section of Input specifications.

2.2.1.4 Columns 14 - 16 (AND/OR)
AND or OR can be specified in columns 14 - 16 to show a relationship
between record identifying indicators or record types. The entry must be
left justified.

2.2.1.5 Columns 15 - 16 (Sequence)
Columns 15 - 16 are used to specify the sequence that defines the ordering
sequence of the record types in a file. The program does not order records
according to sequence. Sequencing is used to determine if the records are
input in the correct order and to notify the user if they are not.

Input specifications with an AND or OR specified in columns 14 - 16
cannot have a sequence code.

2.2.1.6 Column 17 (Sequence Number)
If a numeric sequence code is assigned in columns 15 - 16, column 17 is
used to indicate the number of records in a sequence group. Leave this
column blank if an alphabetic sequence has been specified in columns
15 - 16.

Input specifications with an AND or OR specified in columns 14 - 16
cannot have a sequence number specified in column 17.

2.2.1.7 Column 18 (Option)
If a numeric sequence code has been assigned in columns 15 and 16,
column 18 can be used to specify whether a record of that type must be
present in a sequence group.

Leave this column blank if a blank or alphabetic sequence has been
specified in columns 15 - 16. If all records are listed as optional, no
sequence checking is performed. Input specifications with an AND or OR
specified in columns 14 - 16 cannot have a sequence option specified in
column 18.

2.2.1.8 Columns 19 - 20 (Record-Identifying Indicator)
Specifying an indicator in columns 19 - 20 associates the indicator with
a particular record type. When a record of the type specified for this
program line is processed, the indicator is set on. The indicator remains
on through detail-time output, unless set off by the programmer. After
detail-time output, all indicators used as record-identifying indicators
are set off. See the Migration RPG Language Reference Manual for more
information on the RPG logic cycle and record identifying indicators.

2–7

WORKSTN Files and RPG Program Specifications

2.2.1.9 Columns 21 - 41 (Record Identification Conditions)
Columns 21 - 41 can be used to specify information used to define a record
type. If all records in a file are to be processed regardless of type, or if all
records have the same type, leave columns 21 - 41 blank.

2.2.1.10 Column 42 - 70 (No-op)
Columns 42 - 70 must be left blank on an Input record specification.

2.2.1.11 Columns 71 - 80 (Comments)
Column 71 and beyond can be used for comments. Entries in these
columns are ignored by the compiler.

2.2.2 Input Field Specification Entries
The following sections describe the entries permitted in a WORKSTN
Input field specification. For a detailed description of all possible entries
in an Input field specification, see the Migration RPG Language Reference
Manual. Field descriptions must begin one line below the Input record
specification. Use a separate line to describe each field.

2.2.2.1 Columns 1 - 5 (Line Number)
Columns 1 - 5 can be blank, specify a line number to assist in sequencing
the program specifications, or can be used as a comment. Columns 1 - 5
are ignored by the compiler.

2.2.2.2 Column 6 (Specification Identification)
Column 6 must always contain an I to identify an Input specification.

2.2.2.3 Columns 7 - 42 (no-op)
Columns 7 - 42 must be left blank on an Input field definition.

2.2.2.4 Column 43 (Data Format)
Column 43 is used to describe the format in which the field defined
in columns 53 - 58 is stored. Column 43 should always be blank for
WORKSTN fields.

2.2.2.5 Columns 44 - 47 and 48 - 51 (Field Start and End Positions)
Columns 44 - 47 and 48 - 51 are used to define the physical start and end
positions of a field in a record. These entries do not refer to the location of
the field on the screen. The input fields are placed in the Input record in
the order in which they appear in the screen Description specifications.

The maximum length of a WORKSTN field depends on the type of data it
contains.

• The maximum length of a numeric field is 15.

• The maximum length of an alphanumeric field is 256.

• The maximum length of a data structure is 9,999 characters.

Fields can overlap as long as each field is given a different name.

2–8

WORKSTN Files and RPG Program Specifications

Both start and end position entries must be right-justified and numeric.
Leading zeros can be omitted.

2.2.2.6 Column 52 (Decimal Positions)
Column 52 is used to identify a field as numeric and to specify the number
of digits to the right of the decimal point. The decimal point is implied. It
does not appear in numeric fields passed to a screen unless the fields are
output using an edit code or mask. RPG does not expect a decimal point to
be present in numeric fields returned from the screen to the program.

A value must be specified in this column for a numeric field even if the
field has no decimal points. In this case, specify a zero.

2.2.2.7 Columns 53 - 58 (Field Name)
Columns 53 - 58 must contain the name of a field, array, array element, or
data structure.

2.2.2.8 Columns 59 - 60 (Control Break Indicator)
Columns 59 - 60 must be blank for WORKSTN fields. Control break
indicators are not allowed on WORKSTN fields.

2.2.2.9 Columns 61 - 62 (Matching Fields)
Columns 61 - 62 must be blank for WORKSTN fields. Matching record
indicators are not allowed on WORKSTN fields.

2.2.2.10 Columns 63 - 64 (Field Record Relation Indicator)
Columns 63 - 64 are used to specify field record relation indicators. Field
record relation indicators control the conditions under which data is
extracted from the input buffer into a field. These conditions include
control breaks, matching fields, halts, and external indicators.

2.2.2.11 Columns 65 - 70 (Field Indicators)
Columns 65 - 70 can be used to specify field indicators. Field indicators
check the contents of numeric or alphanumeric fields when they are
extracted from the input record.

2.2.2.12 Columns 71 - 80 (Comments)
Column 71 and beyond can be used for comments. Entries in these
columns are ignored by the compiler.

2.2.3 First Cycle Read Processing of a WORKSTN Device
The first record read from a combine primary WORKSTN device is blank
unless the first page indicator (1P) is used to output an initial WORKSTN
screen during program startup. The WORKSTN Input specifications
should be coded to allow for the initial blank input record if a 1P screen
is not output. A WORKSTN device defined as a combine demand file will
only return a blank record if a READ is performed before a WORKSTN
screen is output.

2–9

WORKSTN Files and RPG Program Specifications

2.2.4 WORKSTN Input Example

Example 2–2 WORKSTN Input Specifications

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
IWORKSTN XX 1 CK
I 2 06 DLR#
I 7 41 DNAME
I XX 1 CI
I XX 1 CF

This example shows WORKSTN Input specifications. Note the use of
record identification codes in columns 21 - 27. It is a common practice to
reserve position 1 of the WORKSTN input record for a screen identification
code when using multiple WORKSTN screens. This practice helps ensure
that the input data is placed in the correct input fields. Optional input
record indicators in columns 19 - 20, which are not used in this example,
can be used to identify WORKSTN input records.

2.3 WORKSTN Calculation Specifications
A WORKSTN file is treated just like any other update capable file in the
Calculation specifications. There are no WORKSTN specific commands or
command parameters in the Calculation specifications.

If the WORKSTN file has been defined as a combine primary file, input is
handled via the RPG logic cycle. If the WORKSTN file has been defined as
a combine demand file, input is achieved via the READ opcode.

Both combine primary and combine demand WORKSTN files can use the
output phase of the RPG logic cycle or the EXCPT opcode to control screen
output. EXCPT statements will cause output from all exception Output
specifications with conditioning indicators set on and matching EXCPT
names.

See the Migration RPG Language Reference Manual for a detailed
description of the READ and EXCPT opcodes.

2.4 WORKSTN Output Specifications
The Output specification is used to describe the records and fields in
an output file and the conditions under which data is output. Output
specifications for WORKSTN files are similar to Output specifications
for other DISK device output files. The first field in each WORKSTN
output record must define the screen upon which the output data is to
be displayed. WORKSTN screens do not accept packed-decimal, zoned-
decimal, or binary output fields. Output specifications are described in
detail in the Migration RPG Language Reference Manual.

2–10

WORKSTN Files and RPG Program Specifications

An Output specification is similar to an Input specification in that it can
be divided into two general categories. Columns 7 - 37 are used to describe
output records. Columns 23 - 74 are used to describe output fields. Field
description entries always begin one line below record description entries.

2.4.1 Output Record Specifications
This section describes the entries used in WORKSTN Output record
specifications. Columns not specifically covered in this section should be
left blank on WORKSTN Output record specifications.

2.4.1.1 Columns 1 - 5 (Line Number)
Columns 1 - 5 can be blank, specify a line number to assist in sequencing
the program specifications, or can be used as a comment. Columns 1 - 5
are ignored by the compiler.

2.4.1.2 Column 6 (Specification Identification)
Column 6 must always contain an O to identify an Output specification.

2.4.1.3 Columns 7 - 14 (File Name)
Columns 7 - 14 must contain the name of the WORKSTN file. The name
must be the same as the file name specified in columns 7 - 14 of the
WORKSTN File specification.

If this entry is blank, the compiler will assume that the information in this
line describes a record from the last file named in an Output specification.
All records and fields associated with one file should be described in one
contiguous section of Output specifications.

2.4.1.4 Columns 14 - 16 (AND/OR)
Columns 14 - 16 can be used to specify AND or OR conditions, which are
used to link output lines together, allowing more than three conditioning
indicators to be used to condition an output record.

2.4.1.5 Column 15 (Record Type)
Column 15 is used to specify the type of record to be output. An entry
in column 15 is required for every output record defined in the Output
specifications.

2.4.1.6 Columns 23 - 31 (Output Indicators)
Columns 23 - 31 can be used to specify indicators to condition the output of
records. Up to three indicators can be specified on an Output specification.
Preceding an indicator with N causes the condition to be valid only when
the associated indicator is not on. Use columns 23 - 25 to describe the first
indicator, columns 26 - 28 to describe the second indicator, and columns
29 - 31 to describe the third indicator. Using the indicators in this way
forms an AND relationship. Use AND or OR codes in columns 14 - 16 if it
is necessary to condition an output record definition with more than three
indicators.

2–11

WORKSTN Files and RPG Program Specifications

2.4.1.7 Columns 32 - 37 (EXCPT Name)
Columns 32 - 37 can be used to specify an EXCPT name for the output
record if the record type specified in column 15 is E. An EXCPT operation
can specify the name in factor 2.

2.4.1.8 Columns 37 - 70 (no-op)
Columns 37 - 70 must be left blank in an output record specification.

2.4.1.9 Columns 71 - 80 (Comments)
Column 71 and beyond can be used for comments. The compiler will
ignore entries in these columns.

2.4.2 Output Field Specifications
This section describes the entries used in WORKSTN Output field
specifications. Columns not specifically covered in this section should
be left blank on WORKSTN Output field specifications.

2.4.2.1 Columns 1 - 5 (Line Number)
Columns 1 - 5 can be blank, specify a line number to assist in sequencing
the program specifications, or can be used as a comment. Columns 1 - 5
are ignored by the compiler.

2.4.2.2 Column 6 (Specification Identification)
Column 6 must always contain an O to identify an Output specification.

2.4.2.3 Columns 7 - 22 (no-op)
Columns 7 - 22 must be blank when defining an output field.

2.4.2.4 Columns 23 - 31 (Output Indicators)
Columns 23 - 31 can be used to specify indicators to condition the output
of fields. Up to three indicators can be specified on an Output field
specification. Preceding an indicator with N causes the condition to be
valid only when the associated indicator is not on. Use columns 23 - 25
to describe the first indicator, columns 26 - 28 to describe the second
indicator, and columns 29 - 31 to describe the third indicator. Using the
indicators in this way forms an AND relationship. Output field definitions
can be conditioned by a maximum of three indicators.

2.4.2.5 Columns 32 - 37 (Field Name)
Columns 32 - 37 can be used to specify a field name, table name, array
name, array element, data structure name, or special word for output.

Note: The first field entry in each WORKSTN output record must be an
output constant containing the screen name.

2.4.2.5.1 Output Field Names
All output field names must have been previously defined in an Input,
Extension, or Calculation specification. The fields must be coded in the
Output specifications in the same order they are coded in the screen’s
Description specifications.

2–12

WORKSTN Files and RPG Program Specifications

2.4.2.5.2 Output Special Words
The special words PAGE, PAGE1 - PAGE7, UDATE, UDAY, UMONTH,
UYEAR, $UDAY, $UMNTH, $UYEAR, and $UDATE can all be used in
WORKSTN Output field specifications.

2.4.2.6 Column 38 (Edit Codes)
Column 38 can be used to specify an edit code. Edit codes can be used to
edit a numeric field without specifying an edit word.

2.4.2.7 Column 39 (Blank After)
Column 39 can be used to specify blank after, which initializes a field
after it has been output. Alphanumeric fields are initialized to blanks and
numeric fields are initialized to zeros.

2.4.2.8 Columns 40 - 43 (End Position in Output Record)
Columns 40 - 43 are used to indicate the location of an output field or
constant in an output record. Specifying an end position is optional
with Migration RPG. If no end position is specified, the compiler will
calculate one based on the output field size. Field size calculation includes
allowances for any edit codes or edit words being applied to the field.

Use K in column 42 if a WORKSTN screen format name is being specified.

2.4.2.9 Column 44 (Output Data Format)
The output data format should always be blank for WORKSTN output
fields. Migration RPG WORKSTN screens do not support the output of
packed-decimal, zoned-decimal, or binary fields.

2.4.2.10 Columns 45 - 70 (Constant, Edit Word, or WORKSTN Screen Format Name)
Columns 45 - 70 can be used to specify an output constant, edit word, or
WORKSTN screen format name. An edit word can be used to modify an
edit code specified in column 38 or to define how data will be formatted
when it is output.

2.4.2.10.1 WORKSTN Screen Format Name
Columns 45 - 54 of the first field in a WORKSTN output record must be
used to specify a WORKSTN screen format name. The WORKSTN screen
format name is used to designate the screen format that will display the
data being passed by the program.

A WORKSTN screen format name requires a K in column 42. Only one
screen format name can be specified for each WORKSTN output record. A
screen format name must be specified for each WORKSTN output record.

A WORKSTN screen format name must be enclosed by single quotation
marks (’). The leading quotation mark must be placed in column 45.

A WORKSTN screen format name can be 1 - 8 characters in length. The
length of the screen format name is specified in column 43. For example,
if a WORKSTN screen format was named ASBECK, the entry in columns
40 - 43 (end position) would be K6.

The WORKSTN screen format name must match a screen format name
specified in columns 7 - 15 of a Screen specification in the screen format
file. If it does not, a runtime error will occur.

2–13

WORKSTN Files and RPG Program Specifications

The Output specification containing the WORKSTN screen format name
cannot be qualified by conditioning indicators in columns 23 - 31.

The Output field specifications that follow the screen specification define
data that is to be displayed on the screen.

Example 2–3 WORKSTN Output Specification

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
OWORKSTN E KEY
O K3 ’KEY’
O DLR#
O DNAME
O ERRMSG

This example shows an output definition for a WORKSTN file. The screen
KEY is to be displayed when this specification is output.

Note: In this example, field end positions have not been specified in
columns 40 - 43. The Migration RPG compiler will compute the
field end positions based on the field size.

2.4.2.11 Columns 71 - 80 (Comments)
Column 71 and beyond can be used for comments. The compiler will
ignore entries in these columns.

2–14

3 Screen Specification

The Screen specification defines a screen format. One Screen specification
is required for each screen defined in a screen format file. A screen format
file can contain multiple screen formats. A Screen specification will be the
first compilable line in any screen format file.

3.1 Columns 1 - 5 (Line Number)
Columns 1 - 5 can be blank, specify a line number to assist in sequencing
the screen specifications, or can be used as a comment. Columns 1 - 5 are
ignored by the compiler.

3.2 Column 6 (Specification Identification)
Column 6 must always contain an S to identify a Screen specification.

3.3 Column 7 (Comment)
An asterisk (*) in column 7 indicates that the line is a comment line. The
line will be ignored by the compiler. Column 6 can be blank on a comment
line.

3.4 Columns 7 - 14 (Screen Format Name)
Columns 7 - 14 are used to identify a screen format that can be accessed
by an RPG program, the MENU Utility, or the PROMPT Utility. The
screen name must begin in column 7 with an alphabetic character (A - Z).
It can be 1 to 8 characters in length. The remaining characters can be
A - Z, 0 - 9, $, or an underscore (_). Each screen name in a screen format
file must be unique.

3.5 Columns 15 - 16 (Reserved)
Columns 15 - 16 are not used at present. They are reserved for future use.

3.6 Columns 17 - 18 (Starting Line Number)
Columns 17 - 18 contain the line number of the screen that this format
will start on. Counting begins from the top of the screen with line one. A
maximum of 48 lines is allowed on a Migration RPG screen format.

3–1

Screen Specification

Table 3–1 Columns 17 - 18 (Starting Line Number)

Entry Definition

Blank Default value of 1 will be used as starting line number

01 - 48 The exact line number the display will start on. This number
cannot exceed 48. A leading zero is not required, but the
number must be right-justified

V Variable line number means the line number is to be supplied
by the program at execution time. If no line number is
supplied by the program, the default value 1 will be used.
The V must be in column 17 if used.

All lines numbers specified in Help and Description specifications for a
screen format are relative to the start line number.

3.7 Columns 19 - 20 (Lines To Clear)
Columns 19 - 20 contain the number of lines to clear when the format is
displayed. The starting line number is the first line cleared. For example,
if the start line is 10 and the lines to clear value is 6, lines 10 - 15 will be
cleared on the CRT before the current screen format is displayed.

Table 3–2 Columns 19 - 20 (Lines To Clear)

Entry Definition

Blank All lines of current display starting with the start line are
cleared.

0 - 48 The number of lines that will be cleared starting with the start
line. This number cannot exceed 48. A leading zero is not
required, but the number must be right-justified

Caution should be used when not clearing an entire display, since part of
the previous display will be left on the screen. If overlaying a format that
has input fields, only the input fields on the new display will be active.

3.8 Column 21 (Allow Lowercase)
Column 21 specifies if lowercase alphabetic characters are allowed to
be input within the display format. This entry can be overridden for
specific fields by the allow lowercase entry in column 51 of the Description
specification.

Table 3–3 Column 21 (Allow Lowercase)

Entry Definition

N or Blank All alphanumeric fields default to uppercase.

Y Lowercase entry in alphanumeric fields is allowed.

3–2

Screen Specification

3.9 Column 22 (Return Input)
Column 22 specifies if data is always returned from the screen format to
the program. This feature is supported to maintain compatibility with
other versions of RPG. Normally column 22 is left blank in Migration RPG
screen formats.

Table 3–4 Column 22 (Return Input)

Entry Definition

Y or Blank All input fields are returned to the program. If mandatory
entry fields (Y in column 29 of the Description specification)
are present in the screen format, the user must enter data in
these fields before the display will return to the program.

N The contents of the input fields are only returned to the
program if the user enters data in one or more fields on
the screen. If the user enters no data, a blank record is
returned to the program. If the user enters no data, then any
mandatory entry fields in the screen format are ignored.

3.10 Columns 23 - 24 (Reserved)
Columns 23 - 24 are not used at present. They are reserved for future use.

3.11 Columns 25 - 26 (Sound Alarm)
Columns 25 - 26 specify if an alarm should sound when the screen is
displayed.

Table 3–5 Columns 25 - 26 (Sound Alarm)

Entry Definition

N or Blank Alarm will not sound.

Y Alarm will sound when screen format is displayed.

01 - 99 If the program indicator is on when the screen format is
displayed, the alarm will sound. If the indicator is off, the
alarm will not sound.

3.12 Column 27 (Enable Function Keys)
Column 27 specifies if function keys are enabled or disabled. For a user
to use a function key, it must first be enabled. Section 7.2, Function Keys,
describes function key usage in detail.

The specific function keys to be enabled or disabled are defined by numbers
in the key mask in columns 64 - 79 of the Screen specification.

3–3

Screen Specification

Table 3–6 Column 27 (Enable Function Keys)

Entry Definition

Blank All function keys are enabled. Key mask entries are ignored.

N Function keys defined in the key mask are disabled. Function
keys not defined in the key mask are enabled.

Y Function keys defined in the key mask are enabled. Function
keys not defined in the key mask are disabled.

R (retain) Function keys that were enabled before the current format is
displayed will remain enabled.

3.13 Column 28 (Enable Command Keys)
Column 28 specifies if command keys are enabled or disabled. Order
for a user to use a command key, it must first be enabled. Section 7.1,
Command Keys, describes command key usage in detail.

The specific command keys to be enabled or disabled are defined by
alphabetic characters in the key mask in columns 64 - 79 of the Screen
specification.

Table 3–7 Column 28 (Enable Command Keys)

Entry Definition

Blank All command keys are enabled. Key mask entries are
ignored.

N Command keys defined in the key mask are disabled.
Command keys not defined in the key mask are enabled.

Y Command keys defined in the key mask are enabled.
Command keys not defined in the key mask are disabled.

R (retain) Command keys that were enabled before the current format
is displayed will remain enabled.

3.14 Columns 29 - 30 (Blink Cursor)
Columns 29 - 30 specify if the cursor should blink when the screen format
is displayed. This qualifier is maintained for compatibility with other
versions of RPG. Cursor attributes can also be set via the terminal setup
functions, which may override the Migration RPG settings.

Table 3–8 Columns 29 - 30 (Blink Cursor)

Entry Definition

N or Blank Cursor will not blink.

Y Cursor will blink when screen format is displayed.

01 - 99 If the program indicator is on when this screen format is
displayed, the cursor will blink. If the indicator is off, the
cursor will not blink.

3–4

Screen Specification

3.15 Columns 31 - 32 (Erase Input Fields)
Columns 31 - 32 specify that when a screen format is displayed, the input
and input/output fields are to be erased.

Table 3–9 Columns 31 - 32 (Erase Input Fields)

Entry Definition

N or Blank Input and input/output fields in screen format will not be
erased.

Y Input and input/output fields in screen format will be erased
when screen format is displayed.

01 - 99 If the program indicator is on when this screen format is
displayed, the input and input/output fields in screen format
will be erased. If the indicator is off, the fields will not be
erased.

3.16 Columns 33 - 34 (Override Fields)
Columns 33 - 34 specify that fields in the screen format can be overridden
based on indicator settings. This function is useful when trapping and
displaying input errors. Overrides should be carefully planned, since the
processing is somewhat complex.

Override operations generally work like this:

1 A user completed entry of data on a screen and uses Enter/Record Adv

to return the data to the program. The override indicator in columns
33 - 34 would be off.

2 The program locates an error in the data entered. It turns on the
override indicator defined in columns 33 - 34 and redisplays the screen
format. During the override display, only fields using indicator control
on output are modified by the screen output function. Output data,
highlighting, and cursor control indicators are used to direct the user
to the fields containing the invalid data.

3 The user corrects the invalid fields and resubmits the data to the
program. The override cycle can be repeated as long as the data
submitted is not valid.

3–5

Screen Specification

Table 3–10 Columns 33 - 34 (Override Fields)

Entry Definition

N or Blank The screen format does not allow overrides.

Y Override operations are performed every time the screen
format is output. This is not recommended, since overrides
should be indicator controlled.

01 - 99 If the program indicator is on when the screen format is
displayed, the following occurs:

• If a field has an indicator specified for output data
(columns 23 - 24 in the Description specification) and
the indicator is off, the data in the field is unchanged.
Fields with a blank, Y, or N in columns 23 - 24 are also
unchanged.

• If a field has an indicator specified for output data and
the indicator is on, output data from the program is
displayed. Any previous data entered on the screen is
overridden.

If the override indicator is off in columns 33 - 34 of the Screen
specification, override operations are not performed.

Figure 3–1 summarizes the effect of indicators on output data during an
override operation:

Figure 3–1 Indicator-based Output Data and Override

Override Fields Indicator
(Columns 33 − 34, Screen specification)

OFF ON

Output data is
constant data

No change to
data on screenOutput Data Indicator

(Columns 23 − 24,
OFF

ON

Description
specification) Output data

supplied by
program

Output data
supplied by
program

Normal Output Override Output

3.17 Columns 35 - 36 (Suppress Input)
Columns 35 - 36 specify whether input is to be returned from the screen.
If input is suppressed, a blank input record is returned to the program
after the screen is displayed. Suppressing input is useful when displaying
multiple screen formats where input will only be required from the last
screen.

3–6

Screen Specification

Table 3–11 Columns 35 - 36 (Suppress Input)

Entry Definition

N or Blank Input will be returned to the program.

Y No input will be returned to the program.

01 - 99 If the program indicator is on when the screen format is
displayed, no input data will be returned to the program. If
indicator is off, input data will be returned to the program.

3.18 Columns 37 - 38 (Reserved)
Columns 37 - 38 are not used at present. They are reserved for future use.

3.19 Column 39 (132-Column Format)
Column 39 specifies if the screen will use an 80 or 132 character screen
width.

Table 3–12 Column 39 (132-Column Format)

Entry Definition

N or Blank 80 character screen width is used.

Y 132 character screen width is used.

Note: When designing screen formats, it is recommended that the screen
width on all screens used by the program be the same, either
80 column or 132 column. Switching screen widths between
formats within a program changes the display characteristics
of the display terminal and may produce undesireable results.
Maintaining a consistent display width produces consistent
output.

Note: If PC-based terminal emulators are being used to access Migration
RPG interactive programs, be sure to test 132-column displays
on the emulator before putting them into use. Some terminal
emulation software has problems supporting a 132-column display.

3.20 Column 40 (Right-to-left Display)
Column 40 controls cursor movement between fields on a screen. By
default, the cursor will move from left to right, top to bottom across the
screen as the user enters data. Placing a Y in column 40 causes the cursor
to move from right to left, top to bottom as data is entered. This option is
useful when writing software for cultures that use a language that is read
and written right to left.

3–7

Screen Specification

Column 27 in the Description specification controls cursor movement
within a field.

Table 3–13 Column 40 (Right-to-Left Display)

Entry Definition

N or Blank Cursor starts in first unprotected input field in upper left
portion of screen and moves left to right, top to bottom,
between the fields.

Y Cursor starts in first unprotected input field in upper right
portion of screen and moves right to left, top to bottom,
between fields.

3.21 Columns 41 - 63 (Reserved)
Columns 41 - 63 are not used at present. They are reserved for future use.

3.22 Columns 64 - 79 (Key Mask)
Columns 64 - 79 specify the function and command keys to enable or
disable for the screen. Command keys are identified by alphabetic
characters and function keys are identified by numbers. The key mask
cannot contain embedded blanks. Command and function keys can be
specified in any order in the mask. Chapter 7, WORKSTN Command and
Function Keys, contains a detailed description of command and function
key definitions and usage. Section 3.12, Column 27 (Enable Function
Keys), and Section 3.13, Column 28 (Enable Command Keys), describe
how to enable or disable function and command keys for a screen.

Table 3–14 Columns 64 - 79 (Key Mask)

Function
Keys
Enabled

Command
Keys
Enabled

Key Mask
Entries

N N All function and command keys listed in the mask are
disabled.

Y N All function keys listed in the key mask are enabled. All
command keys listed in the mask are disabled.

N Y All function keys listed in the mask are disabled. All
command keys listed in the mask are enabled.

Y Y All function and command keys listed in the mask are
enabled.

The following tables define the mask entries for command and function
keys:

3–8

Screen Specification

Table 3–15 Command Key Mask Entries

Command
Key Key Mask Entry

Cmd1 A

Cmd2 B

Cmd3 C

Cmd4 D

Cmd5 E

Cmd6 F

Cmd7 G

Cmd8 H

Cmd9 I

Cmd10 J

Cmd11 K

Cmd12 L

Cmd13 M

Cmd14 N

Cmd15 P

Cmd16 Q

Cmd17 R

Cmd18 S

Cmd19 T

Cmd20 U

Cmd21 V

Cmd22 W

Cmd23 X

Cmd24 Y

Table 3–16 Function Key Mask Entries

Function Key Mask Entry

Print 1

Roll-Up 2

Roll-Down 3

Clear 4

Help 5

Home 6

3–9

Screen Specification

3.23 Column 80 (Reserved)
Column 80 is not used at present. It is reserved for future use.

3–10

4 Help Specification

Help specifications are optional specifications that can be placed between
the Screen specification and the first Description specification in a screen
format definition. Help specifications provide a means to associate help
text with the entire screen format, specific areas within the screen format,
and individual fields within the screen format. Help screens can be unique
to a data screen or shared among several data screens.

Each Help specification references a Help screen. A Help screen is defined
as a normal data screen containing only constant data. Migration RPG
Help screens do not support input and output data fields and do not
exchange data records with the program. Help screen processing occurs
entirely within the screen management section of the Migration RPG
Runtime System. Help screens must be defined within the screen format
source file in which they are referenced.

When a user presses the Help key, the Migration RPG Runtime System
looks for a Help specification associated to the portion of the screen in
which the cursor is located. The Help specification must be defined within
the current screen format. If a Help specification matches the cursor
location, the associated Help screen is displayed. The user can then use
the Roll-Up and Roll-Down keys to page to other Help screens, if they
are available. Pressing a field exit key (Enter , Tab) or record entry key
(Enter/Record Adv) will terminate Help mode and place the user back on
the data screen.

4.1 Columns 1 - 5 (Line Number)
Columns 1 - 5 can be blank, specify a line number to assist in sequencing
the screen specifications, or can be used as a comment. Columns 1 - 5 are
ignored by the compiler.

4.2 Column 6 (Specification Identification)
Column 6 must always contain an H to identify a Help specification.

4.3 Column 7 (Comment)
An asterisk (*) in column 7 indicates that the line is a comment line. The
line will be ignored by the compiler. Column 6 can be blank on a comment
line.

4–1

Help Specification

4.4 Columns 7 - 14 (Help Screen Format Name)
Columns 7 - 14 are used to identify the Help screen that is associated
to the help area defined in columns 34 - 42. The format name must be
exactly eight characters in length and must be formatted as follows:

Table 4–1 Columns 7 - 14 (Help Screen Format Name)

Position Definition

1 Must be an alphabetic character from A - Z.

2 - 6 Must be 5 alphanumeric characters. The first six characters in the help
screen format name should match if more than one screen is used to
provide help information with a help area.

nn Must be a numeric value from 00 to 99. Up to 100 help screens can be
associated with a single help area.

Section 4.16, Help Screen Processing, provides detailed information on
how help screen naming conventions determine the order in which help
screens are processed.

4.5 Columns 15 - 33 (Reserved)
Columns 15 - 33 are not used at present. They are reserved for future use.

4.6 Columns 34 - 37 (Upper Left Boundary)
Columns 34 - 37 contain the line number and the column number of the
upper left corner of the help area covered by the Help specification. When
this is combined with the lower right corner defined in columns 39 - 42,
a rectangular area on the screen is defined which describes the help area
covered by this Help specification. A help area can range from a single
character position to the entire screen. When the cursor is within this
area and the Help key is pressed, the program will call up the help screen
associated with this Help specification.

The upper left boundary location is specified by rrcc, where rr is the
row number (1 - 48) and cc is the column number (1 - 80 for an 80-
column display, 1 - D2 for a 132-column display). Numbers 100 - 132 on a
132-column display are represented as follows:

4–2

Help Specification

Table 4–2 100 to 132 Two Digit Representation

Column Entry Column Entry

100 A0 117 B7

101 A1 118 B8

102 A2 119 B9

103 A3 120 C0

104 A4 121 C1

105 A5 122 C2

106 A6 123 C3

107 A7 124 C4

108 A8 125 C5

109 A9 126 C6

110 B0 127 C7

111 B1 128 C8

112 B2 129 C9

113 B3 130 D0

114 B4 131 D1

115 B5 132 D2

116 B6

4.7 Column 38 (Reserved)
Column 38 is not used at present. It is reserved for future use.

4.8 Columns 39 - 42 (Lower Right Boundary)
Columns 39 - 42 contain the line number and the column number of the
lower right corner of the help area covered by the Help specification. When
this is combined with the upper left corner defined in columns 34 - 37, a
rectangular area on the screen is defined which describes the help area
covered by this Help specification. A help area can range from a single
character position to the entire screen. When the cursor is within this
area and the Help key is pressed, the program will call up the help screen
associated with this Help specification.

The lower right boundary location is specified by rrcc, where rr is the
row number (1 - 48) and cc is the column number (1 - 80 for an 80-column
display, 1 - D2 for a 132-column display). The two digit representation of
the numbers 100 - 132 on a 132-column display are listed in Table 4–2,
100 to 132 Two Digit Representation.

4.9 Column 43 (Reserved)
Column 43 is not used at present. It is reserved for future use.

4–3

Help Specification

4.10 Columns 44 - 45 (Suppress Selection Indicator)
Columns 44 - 45 can be used to specify an indicator to suppress the display
of the help screen. In certain instances, it may be desirable to suppress
the display of select help screens when the user accesses help. Placing an
indicator in columns 44 - 45 and turning it on in the program accomplish
this.

Table 4–3 Columns 44 - 45 (Suppress Selection Indicator)

Code Definition

blank This Help specification is available when the Help key is pressed and
the cursor is within the boundary of this help area.

01 - 99 This Help specification is available when the indicator is off. When the
indicator is on, the Help specification is not available and the associated
help screen will not be displayed if the Help key is pressed while the
cursor is within the boundary of this help area.

4.11 Column 46 (Reserved)
Column 46 is not used at present. It is reserved for future use.

4.12 Columns 47 - 48 (Restore Application Format)
Columns 47 - 48 specifies if the data screen is to be redisplayed if the user
exits help using a command key. A command key can be used to exit a
help screen if the command key is enabled in the key mask of the help
Screen specification.

Table 4–4 Columns 47 - 48 (Restore Application Format)

Entry Definition

Y or Blank The data screen is redisplayed. Control is returned to the
program along with the command key and any data input by
the user before help mode was entered.

N The data screen is not redisplayed. Control is returned to the
program along with the command key. Any data input by the
user before help mode was entered is lost.

01 - 99 If the program indicator is on, the data screen is redisplayed.
Control is returned to the program. The command key and
any data input by the user before help mode was entered is
also returned to the program.

If the indicator is off, the data screen is not redisplayed.
Control is returned to the program along with the command
key. Any data input by the user before help mode was
entered is lost.

4–4

Help Specification

4.13 Column 49 (Reserved)
Column 49 is not used at present. It is reserved for future use.

4.14 Columns 50 - 51 (Boundary Indicator)
By default, once a user has entered help mode, they can scroll through all
of the help screens defined within a screen format file using the Roll-Up

and Roll-Down keys. Using columns 50 - 51 to set a boundary on a Help
specification limits the help screens a user can view. Section 4.16, Help
Screen Processing, and Section 4.17, Help Specification Example, describe
boundaries in more detail.

Table 4–5 Columns 50 - 51 (Boundary Indicator)

Entry Definition

N or Blank This Help specification does not act as a boundary.

Y This Help specification acts as a boundary.

01 - 99 If the program indicator is on, this Help specification acts as
a boundary. If the indicator is off, this Help specification does
not act as a boundary.

4.15 Columns 52 - 80 (Reserved)
Columns 52 - 80 are not used at present. They are reserved for future use.

4.16 Help Screen Processing
The naming format used with help screens determines the order in which
the screens are processed when the Roll keys are used in help mode. The
first six characters in the help format name determine the group to which
the help screen belongs. The two numeric digits at the end of the help
format name determine the order in which the help screen is displayed
while in help mode.

Assume that two groups of help screens are defined for a customer
information entry screen. The first group of screens provides help on
customer address fields. The second group of screens provides information
on customer credit fields. The help screens are named as follows:

• Address Help Screens: ADDRSS10, ADDRSS20, ADDRSS30,
ADDRSS40

• Credit Help Screens: CREDIT10, CREDIT20, CREDIT30

When the screen format file is compiled, the help screens are stored in
the following sequence: ADDRSS10, ADDRSS20, ADDRSS30, ADDRSS40,
CREDIT10, CREDIT20, CREDIT30.

4–5

Help Specification

Assume that the user is in the customer city field and presses the Help key.
This brings up the ADDRSS30 help screen. If the user then presses the
Roll-Down key, the ADDRSS40 help screen is displayed. If the user presses

the Roll-Down key again and boundaries are in place, the ADDRSS10 help
screen is displayed. If boundaries are not in place, the CREDIT10 help
screen is displayed.

Once the user enters help mode, the screens are displayed in sequential
order by format name. The boundary setting in columns 50 - 51 determine
whether the user can view more than one group of help screens for a given
help area.

4.17 Help Specification Example
The following example shows a Help specification defining the Help
screen HLPTXT04 for the ADD screen. This example can be found in
the TEMPATE_MAINTFM.FRM screen format file supplied with the
Migration RPG Compiler Kit. The Help specification example is followed
by the definition of the HLPTXT04 help screen.

4–6

Help Specification

Example 4–1 Help Specification Example

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*
SADD 124 YY AEFG
HHLPTXT04 1 1 2480 Y
D 66 1 1Y Y CFILE MAINTENANCE UTILITX
DY - ADD RECORD

.

.

.
SHLPTXT04 124 YY
D 23 1 1Y Y CADD RECORD SCREEN
D 79 3 1Y CThe Add Record screen aX
Dllows new records to be added to the file. Fill in the
D 79 4 1Y Cdata fields and then prX
Dess the [ENTER/REC ADV] key ([F4], [PF4], or [-] on
D 79 5 1Y CPC key pad) to save theX
D changes. If you would like to leave the record
D 79 6 1Y Cwithout saving any chanX
Dges, enter [CMD1].
D 79 8 1Y Y CCOMMAND & FUNCTION KEYS
D 79 9 1Y C [ENTER/REC ADV] Save cX
Dhanges, return to key screen
D 7910 1Y C [CMD1] Quit rX
Decord without saving changes, return to key screen
D 7911 1Y C [CMD5] SwitchX
D to Find mode, do not save changes
D 7912 1Y C [CMD7] Exit pX
Drogram and return to menu, do not save changes
D 7923 1Y CPress [Page Up] or <PagX
De Down] to view more help text and keypad layouts.
D 7924 1Y Y CPress [ENTER/REC ADV], X
D[F4], or [PF4] to exit help screen.

• The HLPTXT04 help screen name indicates that the help screen is
part of the HLPTXT group of help screens.

• The entries in columns 34 - 42 of the Help specification indicate that
the HLPTXT04 screen can be called from anywhere within the ADD
screen.

• The Y in column 50 of the Help specification indicates that the
HLPTXT04 help specification is a boundary specification. Help screens
outside of the HLPTXT group cannot be viewed using the Roll keys
when this screen is accessed.

4–7

5 Description Specification

The Description specifications follow the Screen specification and optional
Help specifications. Each screen format must contain at least one
Description specification.

Each Description specification completely defines a field for the screen
format. The specification provides the field position on the screen, field
attributes, field length, and other information about each field in the
screen format. A Description specification can be used to control how and
when a field is displayed and when it will accept input.

5.1 Columns 1 - 5 (Line Number)
Columns 1 - 5 can be blank, specify a line number to assist in sequencing
the screen specifications, or can be used as a comment. Columns 1 - 5 are
ignored by the compiler.

5.2 Column 6 (Specification Identification)
Column 6 must always contain a D to identify a Description specification.

5.3 Column 7 (Comment)
An asterisk (*) in column 7 indicates that the line is a comment line. The
line will be ignored by the compiler. Column 6 can be blank on a comment
line.

5.4 Columns 7 - 14 (Field Name)
The field name is optional and does not need to be entered.

Columns 7 - 14 can contain the name of an input or output field. The
field name has a maximum of 8 characters with no embedded blanks. The
name must be left-justified, starting in position 7. The field name may
contain any combination of alphanumeric characters along with the $,
#, and @ characters. The name must begin with an alphabetic character
(A - Z) or the characters #, $, or @. The field name is not required and is
treated as a comment by the compiler. It is provided for documentation
purposes at present, but may be used for cross-reference or program
generation purposes in the future.

5–1

Description Specification

5.5 Columns 15 - 18 (Field Length)
Columns 15 - 18 are used to define the length of the field described by the
Description specification. The field length can be from 1 to 1919. The field
length must be right-justified; leading zeros are not required.

Signed numeric fields should be defined one digit larger than they are
defined within the RPG program to accommodate display of the sign
character.

Fields defining MIC message members for display must be a minimum of
6 characters in length. See Section 5.31.1, Using MIC Message Members
in Output Fields, for more information on using MIC message members in
output fields.

5.6 Columns 19 - 20 (Line Number or Row)
Columns 19 - 20 define the line number or row that the field will start on.
The field can contain 01 - 48. The field must be right-justified; a leading
zero is not required.

The line number is an offset from the start line number, which is defined
in columns 17 - 18 of the Screen specification. The actual line number can
be determined using the following formula:

actual line = starting line (S spec) + line number (D spec) - 1

As an example, a starting line number of 3 and a line number of 5 gives
an actual line number of 7 = (3 + 5 - 1).

The line number cannot exceed the number of lines on the screen. In
the above example, the maximum line number would be 46. The overall
maximum line number is 48.

5.7 Columns 21 - 22 (Horizontal Position or Column)
Columns 21 - 22 define the horizontal position or column in which the field
starts. The field can contain 01 - 80 or 01 - D2, depending on whether the
screen is defined as an 80 or 132 column display. The field must be right-
justified; a leading zero is not required. Two digit values representing
positions 100 to 132 are listed in the following table:

Note: When designing screen formats, it is recommended that the screen
width on all screens used by the program be the same, either
80 column or 132 column. Switching screen widths between
formats within a program changes the display characteristics
of the display terminal and may produce undesireable results.
Maintaining a consistent display width produces consistent
output.

5–2

Description Specification

Table 5–1 Two Digit Representation of 100 to 132

Column Entry Column Entry

100 A0 117 B7

101 A1 118 B8

102 A2 119 B9

103 A3 120 C0

104 A4 121 C1

105 A5 122 C2

106 A6 123 C3

107 A7 124 C4

108 A8 125 C5

109 A9 126 C6

110 B0 127 C7

111 B1 128 C8

112 B2 129 C9

113 B3 130 D0

114 B4 131 D1

115 B5 132 D2

116 B6

Note: Display fields cannot be overlaid within a screen format. Overlaid
fields within a format will generate a compilation error message.

5.8 Columns 23 - 24 (Output Data)
Columns 23 - 24 determine if the field will be output to the screen.
Combining the output entry with a Y in column 26 defines an input/output
field. An entry must be present in the Output Data field to display
program data, constant data, and MIC message member data.

Table 5–2 Columns 23 - 24 (Output Data)

Entry Definition

N or blank No output.

Y Output based on entries in other columns of the Description
specification. Output options are described in Table 5–3,
Output Control Based on Y in Columns 23 - 24.

01 - 99 Output based on entries in other columns of the Description
specification. Output options are described in Table 5–4,
Output Control Based on Indicator in Columns 23 - 24 .

5–3

Description Specification

Table 5–3 Output Control Based on Y in Columns 23 - 24

Output Data
Col 23 - 24

Constant
Type
Col 56

Constant
Data
Col 57 - 79 Result - Data displayed

Y Blank Blank Output data is supplied by program.
Pointer in program output record
buffer is moved the length defined in
columns 15 - 18.

Y Blank Data Data in columns 57 - 79 is displayed.

Y C Blank Blanks are displayed.

Y C Data Data in columns 57 - 79 is displayed.

Y M Blank The Runtime System looks for a
MIC message member number in
the program output record. A MIC
message member number is a 6-
character field. If the output record
contains blanks or the MIC number is
invalid, blanks are displayed. If the
output record contains a valid MIC
number, the associated MIC message
is displayed. In either case, the
pointer in the program output buffer
will be advanced 6 characters. See
Section 5.31.1, Using MIC Message
Members in Output Fields, for more
information on using MIC message
members in output fields.

Y M Data The MIC message identified by the
MIC number in columns 57 - 62 is
displayed. If the MIC number is
invalid, blanks are displayed. See
Section 5.31.1, Using MIC Message
Members in Output Fields, for more
information on using MIC message
members in output fields.

5–4

Description Specification

Table 5–4 Output Control Based on Indicator in Columns 23 - 24

Output Data
Col 23 - 24

Constant
Type
Col 56

Constant
Data
Col 57 - 79 Result - Data displayed

01 - 99 Blank Blank If Output Data indicator is on, output
data is supplied by program.
If Output Data indicator is off, blanks
are displayed.
In either case, the pointer in program
output record buffer is moved the
length defined in columns 15 - 18.

01 - 99 Blank Data If Output Data indicator is on, data in
columns 57 - 79 is displayed.
If Output Data indicator is off, blanks
are displayed.

01 - 99 C Blank This combination is not allowed.

01 - 99 C Data This combination is not allowed.

01 - 99 M Blank If Output Data indicator is on, the
MIC message member specified by
the program is displayed.
If Output Data indicator is off, blanks
are displayed. See Section 5.31.1,
Using MIC Message Members in
Output Fields, for more information
on using MIC message members in
output fields.

01 - 99 M Data If Output Data indicator is on, the
MIC message member specified by
the program is displayed.
If Output Data indicator is off, the
MIC message identified by the
MIC number in columns 57 - 62 is
displayed. See Section 5.31.1, Using
MIC Message Members in Output
Fields, for more information on using
MIC message members in output
fields.

If the field is defined as an input/output field, data within the field can
be modified by the user. If the field is defined as an output only field, the
field contents cannot be modified by the user.

If an override is in progress, field output is controlled by an indicator, and
the indicator is on, then data supplied by the user program is displayed
in the field. If the field output indicator is off, the field contents remain
unchanged. See Section 3.16, Columns 33 - 34 (Override Fields), for a
complete description of the override operation.

5–5

Description Specification

5.9 Column 25 (Reserved)
Column 25 is not used at present. It is reserved for future use.

5.10 Column 26 (Input Data)
Column 26 determines if a field will accept input. When combined with
columns 23 - 24, a field can be defined as an input/output field. This
column determines whether a field is allowed to accept input. Each input
field writes data to the program input record.

Table 5–5 Column 26 (Input Data)

Entry Definition

N or Blank The field will not accept input.

Y The field will accept input.

Input can be provided to an input field via data entered by the user or as
a constant. A constant input field is defined by entering a Y in column 26,
a C in column 56, and the constant data in columns 57 - 79.

5.11 Column 27 (Data Type)
Column 27 specifies the type of data that can be input into the field. Data
typing can be used to provide rudimentary edit checking of input data.
With the exception of the signed numeric data type, entries in the Data
Type field are ignored for output fields.

5–6

Description Specification

Table 5–6 Column 27 (Data Type)

Entry Definition

A Alphabetic data type: The field can contain only alphabetic
characters (A - Z). This is a useful data type for names.

Blank or B Alphanumeric data type: The field can contain alphameric
data. No edit checking is done on the field’s contents. This
is a good data type to use for general data such as customer
address information.

D Decimal data type: The field can contain only the digits 0 - 9.
This data type is useful with fields like dates and amounts.

N Numeric data type: The field can contain only numeric data,
including 0 - 9, commas, periods, and plus and minus signs.
This data type can be used for numeric fields such as pricing
information.

Note: Numeric fields within RPG do not use
embedded commas or decimal points. If a
numeric field in a screen format permits
this type of data to be entered, a parsing
routine will need to be implemented within the
program to extract the formatting characters
before the data is placed in a numeric field
within the program.

S Signed numeric data type: Only the digits 0 - 9 can be
entered into a signed numeric field. A signed numeric field
must be a minimum of 2 digits long. Signed numeric fields
used with RPG can be from 2 - 16 digits long.

The last position of the field is reserved for the sign. This
means the field length in the screen (columns 15 - 18) must
be one larger than the actual field size in the program. For
example, a 6-digit numeric field displayed on a screen with
a signed numeric data type would be defined within the field
Description specification with a length of 7.

To enter a negative value in a signed numeric field, the
user presses the Field - key. The Field - is defined as
Cmd Enter in Migration RPG.

Z Right-to-left data type: The cursor moves from right to left
within the input field. This data type is useful when writing
software for cultures that use a language that is read and
written right to left.

Column 40 in the Screen specification controls cursor
movement between fields within a screen format.

5.12 Column 28 (Mandatory Fill)
Column 28 specifies that if at least one character is entered in the field,
the entire field must be filled before it can be entered and the user can
move on to the next field. Filling the field with spaces is valid.

5–7

Description Specification

Table 5–7 Column 28 (Mandatory Fill)

Entry Definition

N or Blank Field is not required to be filled.

Y If one character is entered into the field, the entire field must
be filled.

5.13 Column 29 (Mandatory Entry)
Column 29 specifies that data must be entered in the field before control
can be returned to the program. The only way control can be returned to
the program without entering data in a mandatory entry field is if no data
has been entered in any input field on the screen.

Table 5–8 Column 29 (Mandatory Entry)

Entry Definition

N or Blank Field does not require that data be entered.

Y Field requires data. The user must enter at least 1 character
of data into this field before control can be returned to the
program.

5.14 Column 30 (Self-Check)
Column 30 can be used to specify modulus 10 or modulus 11 self-checking
for the field. If self-checking is specified, the rightmost digit in the field is
used as the self-check digit (0 - 9). Self-checking applies to input capable
fields only.

If a self-check fails, the cursor remains in the field. The user must enter a
valid value before the program will continue.

Table 5–9 Column 31 (Self-Check)

Entry Definition

Blank No self-checking is done.

E Modulus 11 self-checking is done.

T Modulus 10 self-checking is done.

A right-to-left field (data type Z in column 27) can be a self-check field.
However, the rightmost digit of the field is still used as the check digit.
Thus, in a right-to-left field, the first character entered is the check digit.

Section 5.33, Using Self-Check Fields, contains more information on how
to use self-check fields.

5–8

Description Specification

5.15 Column 31 (Adjust/Fill)
Column 31 specifies how a field is adjusted and filled after it is entered.
If Adjust/Fill is specified, a field can be right-adjusted and zeros or blanks
placed in the unused portion of the field. Adjust/Fill entries only affect
input capable fields.

Table 5–10 Column 31 (Adjust/Fill)

Entry Definition

Blank Signed numeric fields are right adjusted and blank filled. No
adjust or fill is used for any other field type.

Z The field is right adjusted and zero filled.

B The field is right adjusted and blank filled.

5.16 Columns 32 - 33 (Position Cursor)
Normally the cursor is positioned in the leftmost, top-most, input capable
field on a screen (rightmost, top-most in the case of a right-to-left display).
This default cursor position is referred to as the home position on the
screen. Columns 32 - 33 specify that the cursor should be positioned at
the beginning of this field, rather than the home position, when the screen
is displayed. Cursor control is useful when attempting to draw a user’s
attention to a field. For example, if a data entry error occurs, a program
indicator can be used to position the cursor in the field containing the
invalid data. The same indicator can be used to highlight the field, further
drawing the user’s attention. If more than one field in a display has cursor
control enabled, the cursor will be placed in the field closest to the home
position.

Table 5–11 Columns 32 - 33 (Position Cursor)

Entry Definition

N or Blank The cursor will only be positioned in the field if the field is
input capable, occupies the home position, and no other field
in the display has Position Cursor enabled.

Y The cursor will be positioned in this field unless another field
also has Position Cursor enabled. If more than one field have
position cursor enabled, the field closest to the home position
will contain the cursor.

01 - 99 If the indicator is on, the cursor will be positioned in this field
unless another field also has Position Cursor enabled. If
more than one field have position cursor enabled, the field
closest to the home position will contain the cursor. If the
indicator is off, the entry is treated like a blank or N.

5–9

Description Specification

5.17 Column 34 (Enable Dup)
Column 34 controls whether the DUP key can be used in the field. The
DUP key fills the field from the current cursor position to the end of the
field with the DUP character. The DUP character is displayed on the
screen as an asterisk (*) and recorded in the field as a hex 1C.

The purpose of the DUP key is to permit fields to be easily duplicated
as records are entered. Once an initial value has been placed in a field,
the user can press the DUP key in subsequent records to signify that the
field contents are to be duplicated. However, field duplication is not an
automatic process. When control returns to the program, it must check
the field for DUP characters and make the appropriate replacements.

Table 5–12 Column 34 (Enable Dup)

Entry Definition

N or Blank The DUP key is not available for the field.

Y The DUP key is available for the field.

5.18 Column 35 (Controlled Field Exit)
Column 35 specifies that a valid field termination key must be pressed
to exit the field. Valid field termination keys include field exit keys, the
DUP key, the Record Enter/Adv key, command keys, and function keys. See
Section 1.3.1, Workstation Key Assignments, for a complete description of
Migration RPG key definitions.

Specifying a controlled field exit prevents the cursor from automatically
moving to the next field when the current field has been filled. This can be
useful when it is desirable to have the user explicitly enter the field. It is
also useful when paired with the Record Enter/Advance option. When the
Controlled Field Exit and Record Enter/Advance option are used together,
the record is automatically entered and control is returned to the program
when the user presses a field exit key to enter the field.

Table 5–13 Column 35 (Controlled Field Exit)

Entry Definition

N or Blank The cursor will advance to the next field when this field is
filled with data.

Y The cursor will only leave this field when one of the field
termination keys are pressed.

5.19 Column 36 (Auto Record Enter/Advance)
Column 36 can be used to specify that entering the field also serves to
enter the record, returning control to the program. The Auto Record
Enter/Advance option treats field termination like the entry of the

Record Enter/Adv key.

5–10

Description Specification

The Record Enter/Advance option is useful when it is desirable to have the
program automatically take action when a field is filled. The option can be
paired with the Controlled Field Advance option to force the user to press
a field exit key to terminate the field. If the Controlled Field Advance
option is not used, filling the field will automatically enter the record.

Table 5–14 Column 36 (Auto Record Enter/Advance)

Entry Definition

N or Blank Control is not returned to the program when the field is
entered.

Y Control is returned to the program when the field is entered.

5.20 Columns 37 - 38 (Protect Field)
Columns 37 - 38 specify that an input capable field is to be protected from
user input. When field protection is enabled, the cursor skips the protected
field.

If an override operation is in effect, the protect field indicator is ignored.

Table 5–15 Columns 37 - 38 (Protect Field)

Entry Definition

N or Blank The field is not protected from input.

Y The field is always protected from input.

01 - 99 If the program indicator is on, the field is protected from input.
If the indicator is off, the field is not protected from input.

5.21 Columns 39 - 40 (High Intensity)
Columns 39 - 40 specify that the field be displayed with high intensity or
in bold type. Some terminal emulators may use colors instead of bolding
to emphasize a field.

Table 5–16 Columns 39 - 40 (High Intensity)

Entry Definition

N or Blank Normal intensity is always used to display the field.

Y High intensity is always used to display the field.

01 - 99 If the program indicator is on, high intensity is used to display
the field. If the indicator is not on, normal intensity is used to
display the field.

5–11

Description Specification

5.22 Columns 41 - 42 (Blink Field)
Columns 41 - 42 specify that the field be displayed as blinking. Some
terminal emulators may use colors instead of blinking to emphasize a
field.

Table 5–17 Columns 41 - 42 (Blink Field)

Entry Definition

N or Blank The field never blinks when displayed.

Y The field always blinks when displayed.

01 - 99 If the program indicator is on, the field blinks when displayed.
If the indicator is not on, the field does not blink when
displayed.

5.23 Columns 43 - 44 (Nondisplay Field)
Columns 43 - 44 specify that the contents of the field do not appear on
the display. This option is useful when building displays that request
passwords or other sensitive data.

Table 5–18 Columns 43 - 44 (Nondisplay Field)

Entry Definition

N or Blank The field contents are always displayed.

Y The field contents are never displayed.

01 - 99 If the program indicator is on, the field contents are not
displayed. If the indicator is not on, the field contents are
displayed.

5.24 Columns 45 - 46 (Reverse Image)
Columns 45 - 46 specify that the field be displayed in reverse image. Some
terminal emulators may use colors instead of reverse image to emphasize
a field.

Table 5–19 Columns 45 - 46 (Reverse Image)

Entry Definition

N or Blank The field is never displayed with reverse image.

Y The field is always displayed with reverse image.

01 - 99 If the program indicator is on, the field is displayed with
reverse image. If the indicator is not on, the field is not
displayed with reverse image.

5–12

Description Specification

5.25 Columns 47 - 48 (Underline)
Columns 47 - 48 specify that the field be underlined when displayed. Some
terminal emulators may use colors instead of underlining to emphasize a
field.

Table 5–20 Columns 47 - 48 (Underline)

Entry Definition

N or Blank The field is never underlined when displayed.

Y The field is always underlined when displayed.

01 - 99 If the program indicator is on, the field is underlined when
displayed. If the indicator is not on, the field is not underlined
when displayed.

5.26 Column 49 (Column Indicators)
Column 49 specifies that a field should contain column indicators when
displayed. When column indicators are specified, an underscore character
(_) appears in each blank character position of the field. Column indicators
are not transferred to the program input record buffer when the field in
entered.

Table 5–21 Column 49 (Column Indicators)

Entry Definition

N or Blank The field does not display column indicators.

Y Column indicators appear in each blank position of the field.

5.27 Column 50 (Reserved)
Column 50 is not used at present. It is reserved for future use.

5.28 Column 51 (Lowercase)
Column 51 controls the entry of lowercase characters (a - z) into an input
capable field. If lowercase entry is not enabled, lowercase characters typed
into a field are automatically converted to uppercase when the field is
entered.

The Lowercase option on the Description specification overrides the
Lowercase option in column 21 of the Screen specification.

5–13

Description Specification

Table 5–22 Column 51 (Lowercase)

Entry Definition

Blank Field case will be controlled by the lowercase Screen
specification entry in column 21.

N Lowercase characters typed into the field will be converted to
uppercase when the field is entered.

Y The field will accept lowercase characters.

5.29 Columns 52 - 55 (Reserved)
Columns 52 - 55 are not used at present. They are reserved for future use.

5.30 Column 56 (Constant Type)
Column 56 specifies the type of data that is to be displayed in an output
or input/output field. Constant data can be coded directly into the
Description specification in columns 57 - 79 or it can be obtained from
a MIC message member.

Table 5–23 Column 56 (Constant Type)

Entry Definition

Blank If columns 57 - 79 contain data, it is displayed. If columns
57 - 79 are blank, data from the program output record is
displayed.

C The data in columns 57 - 79 is displayed. Use the C option if
blanks are to be displayed in the field.

M A MIC message member is displayed. The message member
code can be placed in columns 57 - 79 or provided by the
program. See Section 5.31.1, Using MIC Message Members
in Output Fields, for more information on using MIC message
members in output fields.

5.31 Columns 57 - 79 (Constant Data)
Columns 57 - 79 specify information about the data to be placed in an
output or input/output field. Data in columns 57 - 79 and the Constant
Type specified in column 56 determine how the data is interpreted.

5–14

Description Specification

Table 5–24 Columns 57 - 79 (Constant Data)

Constant
Type

Constant
Data Result

C Data Constant data appears in the field.

C Blanks Blanks appears in the field.

Blank Data Constant data appears in the field.

Blank Blanks Data from program output record appears in the field.

M Data The entry in the Constant Data field should be a 6-
character, MIC message member number. The Migration
RPG Runtime System uses the MIC number to locate
and display the associated MIC message member. See
Section 5.31.1, Using MIC Message Members in Output
Fields, for more information on using MIC message
members in output fields.

M Blanks The Migration RPG Runtime System will expect to find
a 6-character, MIC message member number in the
program output record. The Runtime System uses the
MIC number to locate and display the associated MIC
message member. See Section 5.31.1, Using MIC
Message Members in Output Fields, for more information
on using MIC message members in output fields.

5.31.1 Using MIC Message Members in Output Fields
MIC message member output fields are identified by an M in column 56
(Constant Type) of the Description specification. A MIC number consists of
4 digits followed by one of the following Message ID codes:

Table 5–25 MIC Message Member ID Codes

Entry Definition

U1 User Level 1 message member.

U2 User Level 2 message member.

S1 System Level 1 message member.

S2 System Level 2 message member.

If the Message ID code is left blank, the User Level 1 message member
(U1) is assumed.

The amount of the MIC message that is displayed is determined by the
field length entry in columns 15 - 18. If the field length is shorter than the
MIC message, the message text is truncated. If the field length is longer
than the message text, the field is padded with blanks.

When the MIC number is obtained from the program output record, only 6
characters need to be reserved in the buffer for the number. The Runtime
System will always advance 6 characters in the program buffer when it
encounters a program-supplied MIC number, regardless of the field length
specified in the Description specification.

5–15

Description Specification

Information on creating and maintaining MIC Message Member files is
available in Chapter 12 of the Migration RPG User’s Guide, Maintaining
Message Files (RPGMSG Utility).

5.32 Column 80 (Continuation)
Column 80 allows constant data to be continued on the next line. If the
constant data placed in column 57 - 79 exceeds 23 characters, place an X
in column 80 and continue the constant data in column 7 of the next line.
Constants can be continued over multiple lines using the Continuation
option.

Example 5–1 Constant Using Continuation Option

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*
D 37 1 1Y Y CFILE MAINTENANCE UTILITX
DY - ADD RECORD

This example shows a constant output field that is 37 characters in
length. The constant is too long to fit in columns 57 - 79, so column 80 is
marked with an X, enabling the Continuation option. The remainder of
the constant data appears on the next Description specification starting in
position 7.

5.33 Using Self-Check Fields
Self-check fields are defined by placing a Y in column 25 (Input) and a T
or E in column 30 (Self-Check) of an input field Description specification.
A self-check field provides a means to validate special codes like account
numbers.

A self-check field works by running the contents of a field through a
arithmetic formula, then comparing the results to a check digit. The check
digit will be a value of 0 - 9. The check digit is always the rightmost digit
in the field and is not used in the self-check calculations.

Self-check fields are generally used with numbers which have been
generated in advance so that their self-check digits will be valid. For
example, a bank assigning account numbers that can pass the modulus 10
self-check would choose the numbers from a generated list of modulus 10
numbers, thus ensuring that they assign valid account numbers to new
accounts.

Migration RPG provides modulus 10 and modulus 11 self-check algorithms.
Modulus 10 self-checking is specified by entering a T in column 30 of the
input field Description specification. Modulus 11 self-checking is specified
by entering an E in column 30. The following sections describe how these
self-check algorithms work.

5–16

Description Specification

5.33.1 Modulus 10 Self-Check
The following steps are used to determine the modulus 10 check digit.
The rightmost digit in the input string is not used in the calculations.
It is considered the check digit and is compared to the results of the
calculations. The field 134825 will be used as an example.

1 Disregard the rightmost digit, 5, leaving 13482.

13482

2 Multiply the left most digit, 1, and each alternate digit, 4 and 2, by 2,
giving the results 2, 8, 4. Add these digits together:

2 + 8 + 4 = 14

3 Add in the remaining digits, 3 and 8:

14 + 3 + 8 = 25

4 Subtract the result, 25, from the next highest number ending in zero,
in this case 30. The result is the calculated check digit:

30 - 25 = 5

The calculated check digit is compared to the check digit at the end of the
string. If they match, the field is valid.

5.33.2 Modulus 11 Self-Check
The following steps are used to determine the modulus 11 check digit.
The rightmost digit in the input string is not used in the calculations.
It is considered the check digit and is compared to the results of the
calculations. The field 8940711209 will be used as an example.

1 Disregard the rightmost digit, 9, leaving 894071120.

2 Assign each digit in the number a weighting factor in the sequence 2,
3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 2, 3, and so on. Work from right to left.
In the example, 894071120 would be assigned the weighting factor
432765432.

8 9 4 0 7 1 1 2 0
4 3 2 7 6 5 4 3 2

3 Multiply each digit by its weighting factor:

8 9 4 0 7 1 1 2 0
4 3 2 7 6 5 4 3 2
-- -- -- -- -- -- -- -- --
32 27 8 0 42 5 4 6 0

4 Add the results of the digits multiplied by their weighting factor:

32 + 27 + 8 + 0 + 42 + 5 + 4 + 6 + 0 = 124

5 Divide the result by 11.

124/11 = 11; Remainder = 2

6 Subtract the remainder from 11:

11 - 2 = 9

5–17

Description Specification

The result, 9, is the calculated check digit.

Note: If the remainder is 1, the number does not have a check digit.
Be sure numbers generated for modulus 11 self-checks do not
have a remainder of 1. Valid remainders are 0 and 2 - 9.

The calculated check digit is compared to the check digit at the end of the
string. If they match, the field is valid.

5–18

6 WORKSTN File Processing

WORKSTN files can be defined as combine primary or combine demand
files. If a WORKSTN file is defined as the primary file, no secondary files
are allowed in the program.

6.1 Primary WORKSTN File
Primary WORKSTN files are processed very much like a primary update
DISK file. A screen is output during the output phase of the RPG logic
cycle. Input is requested from the screen during the input phase of the
RPG logic cycle.

Care must be taken during program startup with a primary WORKSTN
file. If no screen is displayed during the first cycle of the RPG program
startup phase, then a blank record is returned from the WORKSTN
device during first cycle input. If a WORKSTN screen is displayed during
the output phase of program startup, then input is obtained from the
WORKSTN screen during first cycle input. When defining a WORKSTN
device as the primary file, it is customary to display a WORKSTN screen
during program startup using the first page indicator (1P).

Example 6–1 WORKSTN Combine Primary Output Specifications

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
OWORKSTN D 1P
O OR 71
O K5 ’SCRNA’
O UDATE Y 10
O TYPE 11
O 98 MSG,E 86
O 93 ’PRT-OFF’
O WWWAR# 99
O WWSPLT 102

This example shows WORKSTN file Output specifications for a combine
primary file. Note the use of the 1P indicator to output this screen during
program startup.

After the first cycle, all primary input is assumed to be coming from the
WORKSTN device. Screen output can be done using the EXCPT opcode or
during the output phase of each program cycle.

6–1

WORKSTN File Processing

6.2 Demand WORKSTN File
It is a common programming practice to define WORKSTN files as combine
demand files. This gives the programmer more control over when screens
are displayed and input is retrieved. Screen output is done using the
EXCPT opcode and screen input is retrieved using the READ opcode.

When using a demand WORKSTN file, a screen must always be output
before input can be retrieved. If a READ operation is done against a
WORKSTN file without first displaying a screen, a blank record will be
returned.

Example 6–2 WORKSTN Demand File Calculation Specifications

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
C EXCPTKEY
C READ WORKSTN 90

This example shows WORKSTN demand file Calculation specifications.
Note that the EXCPT operation appears before the READ operation to
ensure that a screen is being displayed from which to retrieve input.

The indicator in columns 56 - 57 turns on if the WORKSTN read is
terminated by an exception. An exception occurs when the user presses
one of the function keys (Roll-Up , Roll-Down , Clear , Print , Home , and Help).

6.3 WORKSTN End-of-File
To indicate end-of-file on a WORKSTN file, the last-record (LR) indicator
must be set on.

6–2

7 WORKSTN Command and Function Keys

Command and function keys provide a way for the user to interact with an
interactive WORKSTN program. Command and function keys terminate
entry on the current input screen and return control to the program. The
program can determine which command or function key was entered by
the user and take action based on the information.

7.1 Command Keys
This section describes how to define and use command keys and command
key indicators. The following table defines all of the Migration RPG
command keys, the keystrokes used to execute each command key, and
each command key’s associated K indicator:

7–1

WORKSTN Command and Function Keys

Table 7–1 Command Keys

Command
Key Keys to Press K Indicator Key Mask Entry

Cmd1 PF1 1 KA A

Cmd2 PF1 2 KB B

Cmd3 PF1 3 KC C

Cmd4 PF1 4 KD D

Cmd5 PF1 5 KE E

Cmd6 PF1 6 KF F

Cmd7 PF1 7 KG G

Cmd8 PF1 8 KH H

Cmd9 PF1 9 KI I

Cmd10 PF1 0 KJ J

Cmd11 PF1 - KK K

Cmd12 PF1 = KL L

Cmd13 PF1 ! KM M

Cmd14 PF1 @ KN N

Cmd15 PF1 # KP P

Cmd16 PF1 $ KQ Q

Cmd17 PF1 % KR R

Cmd18 PF1 ^ KS S

Cmd19 PF1 & KT T

Cmd20 PF1 * KU U

Cmd21 PF1 (KV V

Cmd22 PF1) KW W

Cmd23 PF1 _ KX X

Cmd24 PF1 + KY Y

7.1.1 Defining Command Keys
The command keys that can be used in a program are defined in the
Screen specification. Chapter 3, Screen Specification, describes the
Screen specification in detail. A programmer has the option of making all
command keys available, no command keys available, or selected command
keys available. The following examples show how this is accomplished.

7–2

WORKSTN Command and Function Keys

Example 7–1 Defining all command keys as enabled

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
SKEY 124

In this example, column 28 in the S specification is left blank. This
indicates that all command keys are enabled for the KEY screen.

Example 7–2 Defining all command keys as disabled

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
SKEY 124 Y

In this example, column 28 in the S specification is Y. This indicates that
only the command keys defined in the key mask in columns 64 - 79 are
enabled. Since no keys are defined in the key mask, no command keys are
enabled for the KEY screen.

Example 7–3 Defining selected command keys as enabled

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
SKEY 124 Y DEL

In this example, column 28 in the S specification is Y. This indicates that
only the command keys defined in the key mask in columns 64 - 79 are
enabled. Command keys 4, 5, and 12 are enabled for the KEY screen.

Note: Command keys are represented in the key mask on the Screen
specification by the character portion of the K indicator. In the
previous example, Cmd4 corresponds to the indicator KD, which
corresponds to the key mask value D; Cmd5 = KE = E; Cmd12 = KL =
L.

7.1.2 Command Key Indicators
Command keys are associated to K indicators. Migration RPG provides 24
K indicators: KA - KN, KP - KY. These can be used as general purpose
indicators within an RPG program. When a command key is used to exit
a screen, the associated K indicator is turned on. All other K indicators
are turned off. For example, if the user enters Cmd7 , the indicator KG is
turned on in the program and all other K indicators are turned off.

7.1.3 Command Keys and the INFDS Data Structure
If an INFDS data structure is defined in a WORKSTN program, the
*STATUS field will be set to 00002 when a screen is terminated using a
command key. The INFDS data structure is discussed in more detail in
Chapter 8, INFDS Data Structure.

7–3

WORKSTN Command and Function Keys

7.2 Function Keys
This section describes how to define and use function keys. Function
keys terminate a screen and return control to the program by creating an
exception condition. This condition can be trapped in one of two ways: by
specifying an indicator in columns 56 - 57 of a READ operation or by using
an INFSR subroutine.

The INFDS data structure and *STATUS field must be used to determine
the specific function key entered if more than one function key is enabled
on a screen.

Function keys are defined in the Screen specification key mask using
the numbers 1 - 6. The following table defines each function key, its key
strokes, and its key mask definition:

Table 7–2 Function Keys

Function Function Key Key Mask Entry

Print PF1 +P 1

Roll-Up PF1 +U or
Next Screen

2

Roll-Down PF1 +D or
Prev Screen

3

Clear PF1 +C or 4

Help PF1 +H or
PF2 or Help

5

Home PF1 +T 6

7.2.1 Defining Function Keys
The function keys that can be used in a program are defined in the
Screen specification. Chapter 3, Screen Specification, describes the
Screen specification in detail. A programmer has the option of making
all function keys available, no function keys available, or selected function
keys available. The following examples show how this is accomplished.

Example 7–4 Defining all function keys as enabled

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
SKEY 124

In this example, column 27 in the S specification is left blank. This
indicates that all function keys are enabled for the KEY screen.

7–4

WORKSTN Command and Function Keys

Example 7–5 Defining all function keys as disabled

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
SKEY 124 Y

In this example, column 27 in the S specification is Y. This indicates that
only the function keys defined in the key mask in columns 64 - 79 are
enabled. Since no keys are defined in the key mask, no function keys are
enabled for the KEY screen.

Example 7–6 Defining selected function keys as enabled

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
SKEY 124 Y 23

In this example, column 27 in the S specification is Y. This indicates that
only the function keys defined in the key mask in columns 64 - 79 are
enabled. The Roll-Up and Roll-Down function keys are enabled for the KEY
screen.

7.2.2 Function Keys and the INFDS Data Structure
If an INFDS data structure is defined in a WORKSTN program, the
*STATUS field will be set to one of the following values when a screen is
terminated using a function key:

Table 7–3 INFDS Function Key Codes

Code Definition

01121 Print key was pressed

01122 Roll-Up key was pressed

01123 Roll-Down key was pressed

01124 Clear key was pressed

01125 Help key was pressed

01126 Home key was pressed

The INFDS data structure is discussed in more detail in Chapter 8, INFDS
Data Structure. The INFDS data structure and the *STATUS field must
be used to identify the function entered on screens which define more than
one function key.

7–5

8 INFDS Data Structure

The INFDS data structure is used to obtain return information from
a WORKSTN device. The *STATUS field in the INFDS data structure
can be used to determine if a function key, command key, or the

Enter/Record Adv key was used to exit a screen.

The Migration RPG INFDS data structure implementation includes
limited compatibility with the IBM RPG II INFDS function. This is
discussed further in Section 8.1.2, INFDS IBM Compatibility.

8.1 Coding the INFDS Data Structure
The INFDS data structure is coded using a continuation line following the
WORKSTN file definition in the File specifications and a data structure
definition in the Input specifications.

Example 8–1 INFDS Data Structure Coding Example

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
FWORKSTN CD F 1300 WORKSTN
F KINFDS $INFDS

.

.

.
* INFDS Data Structure
*
I$INFDS DS
I *STATUS $STAT

• The continuation line following the WORKSTN device definition
defines the INFDS data structure $INFDS.

• The INFDS definition is completed with the $INFDS data structure
definition in the Input specifications.

Note: The INFDS data structure is not a general-purpose data structure.
Fields other than the *STATUS field should not be defined within
the INFDS data structure.

8–1

INFDS Data Structure

8.1.1 *STATUS Keyword
The *STATUS keyword identifies a 5-digit, numeric subfield with zero
decimal positions within the INFDS data structure. This subfield contains
a code that identifies the method used to exit the last WORKSTN screen.
Possible return codes are:

Table 8–1 *STATUS Codes

Code Definition

00000 Enter/Record Advance key pressed

00002 A command key was pressed

01121 Print key was pressed

01122 Roll-Up key was pressed

01123 Roll-Down key was pressed

01124 Clear key was pressed

01125 Help key was pressed

01126 Home key was pressed

1100 A WORKSTN read operation was attempted before a WORKSTN write
operation has taken place.

8.1.2 INFDS IBM Compatibility
Migration RPG provides limited compatibility with the IBM RPG II
INFDS data structure. The IBM INFDS data structure provides several
additional keywords. These keywords and the data they return are listed
in the following subsections.

8.1.2.1 *OPCODE Keyword
The *OPCODE keyword identifies a 5-character, alphanumeric subfield
within the INFDS data structure. This subfield contains a value that
identifies the WORKSTN I/O operation that most recently completed
execution. Possible return values are READ or WRITE.

8.1.2.2 *RECORD Keyword
The *RECORD keyword identifies an 8-character, alphanumeric subfield
within the INFDS data structure. If *OPCODE contains WRITE, then
*RECORD contains the name of the screen to which output was written.
Otherwise, *RECORD contains blanks.

8.1.2.3 *SIZE
The *SIZE keyword identifies a 4-digit, numeric subfield within the INFDS
data structure. The subfield contains the display size. The *SIZE subfield
under Migration RPG always returns 1960.

8–2

INFDS Data Structure

8.1.2.4 *MODE
The *MODE keyword identifies a 2-digit, numeric subfield within the
INFDS data structure. The *MODE subfield under Migration RPG always
returns 00.

8.1.2.5 *INP
The *INP keyword identifies a 2-digit, numeric subfield within the INFDS
data structure. The *INP subfield under Migration RPG always returns
00.

8.1.2.6 *OUT
The *OUT keyword identifies a 2-digit, numeric subfield within the INFDS
data structure. The *OUT subfield under Migration RPG always returns
00.

8.1.2.7 Return Code (Positions 23 - 26)
Positions 23 - 26 of an IBM INFDS data structure can be defined to accept
a 4-character return code. Migration RPG always places 0000 in these
positions of the INFDS data structure with the following two exceptions:

1 If the screen is the first screen displayed for the program, the return
code is set to 0100.

2 If a WORKSTN read operation is attempted before a WORKSTN write
operation has taken place, the return code is set to 1100.

8.1.2.8 IBM Compatible INFDS Data Structure
The following example shows how an IBM-compatible INFDS data
structure is coded in Migration RPG. The * subfields can be coded in
any order. The return code field must always be defined in positions
23 - 26.

Example 8–2 IBM Compatible INFDS Data Structure

1 2 3 4 5 6
12345678901234567890123456789012345678901234567890123456789012345

*
FTERMINALCD F 120 WORKSTN
F KINFDS EXCPTN

.

.

.
IEXCPTN DS
I *STATUS STATUS
I *OPCODE OPCODE
I *RECORD RECORD
I *SIZE SIZE
I *MODE MODE
I *INP INP
I *OUT OUT
I 23 26 RCODE

8–3

INFDS Data Structure

8.2 Using an INFDS Data Structure
The INFDS data structure is used in conjunction with the resulting
indicator in columns 56 - 57 of a READ operation or the INFSR
subroutine. The INFSR subroutine is described in detail in Chapter 9,
INFSR Subroutine. The INFDS data structure is generally used to
identify the method used to exit a screen. The data structure must be
used to identify function keys if multiple function keys are enabled on a
screen.

The following example shows how the INFDS data structure can be used
to identify the roll keys. The code used in this example is located in
the TEMPLATE_INQ.RPG program included with the Migration RPG
Compiler Kit.

Example 8–3 INFDS Example: Roll Key Identification

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
FWORKSTN CD F 1300 WORKSTN
F KINFDS $INFDS

.

.

.
* INFDS Data Structure
*
I$INFDS DS
I *STATUS $STAT

.

.

.
C INQ01 TAG
C ’INQ01 ’DEBUGDEBUG
C EXCPTINQUIR
C MOVE *BLANKS ERRMSG
C SETOF 90
C READ WORKSTN 60
*
* Check for function keys.
*
C N60 GOTO INQ02

CAS C $STAT CASEQ01123 PRVREC Roll-Down
C $STAT CASEQ01122 NXTREC Roll-Up
C CAS BADFNC

END C END
C GOTO INQ01

.

.

.

8–4

9 INFSR Subroutine

The INFSR subroutine is used to handle WORKSTN screen exception
processing. An exception occurs if an enabled function key is pressed
while reading from a combine primary WORKSTN file or while using
the READ opcode on a combine demand file without a resulting indicator
specified in columns 56 - 57.

An INFSR subroutine is written like a normal subroutine within the
Calculation specifications using the BEGSR and ENDSR statements.
It can also be called like a normal subroutine during processing using
the EXSR opcode. Where an INFSR subroutine is called using the EXSR
opcode, it returns as a normal subroutine. Entries in factor 2 of the INFSR
subroutine ENDSR statement are ignored.

9.1 INFSR Exception Processing
When an INFSR subroutine is activated by an exception, it first processes
the Calculation specifications coded between its BEGSR and ENDSR
statements. When the subroutine has completed operations, it uses the
entry in factor 2 of the ENDSR statement to determine where to resume
program execution. Possible factor 2 entries are:

Table 9–1 INFSR Return Options

ENDSR
Factor 2
Entry Description

*GETIN Program execution resumes at the beginning of a new cycle.

*DETC Program execution resumes at the beginning of detail calculations within
the same cycle.

*CANCL Program execution is terminated. Files are closed and the program exits.

9.1.1 Coding INFSR Exception Return Options
Exception return control from an INFSR subroutine is determined by
the entry in factor 2 of the INFSR subroutine ENDSR statement. Valid
entries are *GETIN, *DETC, and *CANCL. The action taken for each one
of these entries is listed in Table 9–1, INFSR Return Options.

The INFSR return option can be listed in factor 2 as a literal, field, or
array element. Using a field or array element allows the programmer to
change where the INFSR subroutine resumes execution based on program
parameters.

9–1

INFSR Subroutine

Example 9–1 INFSR Subroutine Code Example

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

*
FKEYIN CP F 1920 WORKSTN
F KINFDS $INFDS
F KINFSR $INFSR

.

.

.
I$INFDS DS
I *STATUS $STAT

.

.

.
CSR $INFSR BEGSR
CSR $STAT COMP 01121 21 Print
CSR $STAT COMP 01122 22 Roll-Up
CSR $STAT COMP 01123 23 Roll-Down
CSR $STAT COMP 01124 24 Clear
CSR $STAT COMP 01125 25 Help
CSR $STAT COMP 01126 26 Home
CSR ENDSR’*DETC’

.

.

.

This example depicts the INFSR subroutine and INFDS data structure
used together to handle a program exception. When a function key is
pressed, program control is turned over to the INFSR subroutine $INFSR.
The subroutine used the *STATUS field, $STAT, in the INFDS data
structure to determine which function key was used to exit the WORKSTN
screen. When the INFSR subroutine completes, the *DETC entry in factor
2 of the INFSR ENDSR statement directs program control back to the
beginning of detail calculations for the current program cycle.

If the INFSR return option in factor 2 is left blank, the user is prompted
to enter one of the return options after an INFSR exception occurs and the
INFSR subroutine has executed.

9–2

10 WORKSTN Program Examples

This chapter provides examples of RPG WORKSTN programs and screens.
The source code and data files used in these examples are provided
with the Migration RPG Compiler kit. The files are located in the
S3X$EXAMPLES directory. It is strongly recommended that the files
be copied to a different location before any experimentation is done with
them.

10.1 Combine Demand WORKSTN Program Example
This section provides an example of a simple combine demand WORKSTN
program, INVENT.RPG. The program accesses the screens defined in the
INVENTFM.FRM screen format file. The following three screen formats
are defined for the program:

• PARTNUMB

• UPDATE

• ERROR

The purpose of the program is to allow the user to select parts from
an inventory file and display and update the inventory data. The
PARTNUMB screen is used to retrieve the three-character part number
that is the key into the inventory file. The UPDATE screen is used to
display the inventory information if the specified part number is found.
The UPDATE screen also allows updates to any inventory field except
the part number. The ERROR screen displays an error message if an
invalid part number is entered on the PARTNUMB screen. The program
is terminated by entering a Cmd7 from any of the screens.

The program uses the following indexed file INVENT.DAT:

Example 10–1 INVENT.DAT Data file

1 2 3
123456789012345678901234567890

P01NUT W2RED 0300135
P02BOLT W2GREEN0880167
P03SCREW W1BLUE 0180048
P04SCREW W2RED 0150143
P05CAM W1BLUE 0130205
P06COG W3RED 0200215
P07GEAR W3GREY 0100234
P08BEARINGW2GREY 0260136
P09BOLT W1WHITE0060015

10–1

WORKSTN Program Examples

10.1.1 INVENT Example Components
The INVENT program is comprised of the following files. These files can
be found in the S3X$EXAMPLES directory. It is strongly recommended
that the files be copied to another directory before they are used.

Table 10–1 INVENT Program Files

File Description

INVENT.COM Procedure used to recreate the INVENT.DAT file.

INVENT.DAT Indexed inventory data file.

INVENT.FDL Description file used to create INVENT.DAT.

INVENT.RPG Inventory maintenance program source code.

INVENT.TXT Sequential version of INVENT.DAT. This file is used by the
INVENT.COM procedure to recreate the INVENT.DAT file. It is
recommended that this file not be modified.

INVENTFM.FRM Inventory maintenance program screen source code.

10.1.2 INVENT.RPG Source Code
This is the Migration RPG source code that comprises the INVENT.RPG
program:

Example 10–2 Combine Demand WORKSTN Program Example -
INVENT.RPG

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

H
* INVENT.RPG
* Program to review and modify parts inventory.
* Program uses a combine demand WORKSTN file.
*

0010 FPARTS CD F 25 WORKSTN
0020 FINVENT UC F 24R 3AI 1 DISK

*
0030 IINVENT
0040 I 1 24 DATA

*
* WORKSTN input descriptions. Note the use
* of position 1 in the input records to identify
* the input screen.
*

0050 IPARTS 01 1 CA
0060 I 2 4 PN
0070 I 02 1 CB
0080 I 2 25 DATA
0085 I 03

*
0090 IDATA DS
0100 I 1 3 PN
0110 I 4 10 PNAME
0120 I 11 12 WHOUSE

Example 10–2 Cont’d on next page

10–2

WORKSTN Program Examples

Example 10–2 (Cont.) Combine Demand WORKSTN Program Example -
INVENT.RPG

0130 I 13 17 COLOR
0140 I 18 200WEIGHT
0150 I 21 240QTY

*
* Output Part # screen.
*

0160 C EXCPTP_NUM
*
* Read Part # screen. If screen terminated with
* a Cmd7, exit program.
*

0170 C READ PARTS
0180 C KG SETON LR
0190 C KG GOTO END

*
* Look for Part in Inventory file. If Part not
* found, display the Error screen.
*

0200 C PN CHAININVENT 99
0210 C 99 EXCPTP_ERR
0215 C 99 READ PARTS
0217 C 99 KG SETON LR
0220 C 99 GOTO END

*
* If Part was found, display the update screen
* and retrieve data from it. Place the updated
* record in the Inventory file.
*

0230 C EXCPTP_UPD
0240 C READ PARTS
0242 C KG SETON LR
0244 C KG GOTO END
0250 C EXCPTINV

*
0260 C END TAG

*
* WORKSTN output descriptions. Note that the first
* output field specification always lists the name
* of the screen the output is to be sent to.
*

0270 OPARTS E P_NUM
0280 O K8 ’PARTNUMB’
0290 O 1 ’A’
0300 O PN 4
0310 O E P_UPD
0320 O K6 ’UPDATE’
0330 O 1 ’B’
0340 O DATA 25
0350 O E P_ERR
0360 O K5 ’ERROR’
0370 O 22 ’No part by that number’

*
0380 OINVENT E INV
0390 O DATA 24

— The WORKSTN file is defined on line 10 as a combined demand file.
The record length of 25 is chosen based on the longest WORKSTN
input buffer required.

— Line 20 shows the definition for the inventory file.

10–3

WORKSTN Program Examples

— The data layout for the inventory file is given in the data structure on
lines 90 through 150 and referenced in the input record on lines 30
through 40.

— Lines 50 through 85 show the definition of the input records provided
by the WORKSTN screens. The first character in the WORKSTN
file record buffer is examined to see if it is ’A’ or ’B’. Note that
lines 290 and 330 place an ’A’ or ’B’ into the first position of the
WORKSTN file record buffer. This first byte corresponds to the CODE
field, specified as part of the two WORKSTN input records. The CODE
field is used to provide a means for the Input specifications to identify
the last input screen. The CODE fields could also have been defined as
input constants within the WORKSTN screens.

— Line 85 provides a catch-all input record definition to allow the
program to process input records that do not have an ’A’ or ’B’
in position 1. This functionality is needed when returning control from
the ERROR screen.

— Lines 270 through 370 show the specifications that output data to the
WORKSTN screens. The three screens are listed. Each screen uses
an EXCPT name to make it easy to select the appropriate screen for
display. Note that data is placed in the WORKSTN record buffer in
lines 290 through 300 330 through 340, and line 370. The ending
positions for these fields match the end positions for the output data
fields in the WORKSTN Description specifications.

— Lines 160 through 260 define the actions performed during each
cycle.

1 The PARTNUMB screen is displayed on line 160.

2 Input is requested from the WORKSTN file on line 170. An
’A’ was output in the first position of the WORKSTN output
record and will be returned in the first position of the WORKSTN
input record by the READ operation. The ’A’ will identify the
WORKSTN input record as belonging in the Input specifications on
lines 50 - 60

3 On line 180 the program checks for screen termination via Cmd7 .
If Cmd7 was entered, the program is terminated (190).

4 The part number obtained from the PARTNUMB screen is used on
line 200 to retrieve part information from the inventory file.

5 Line 210 displays the ERROR screen if part record retrieval is
unsuccessful. Line 215 pauses the program so the error message
can be viewed. The user must press Record/Enter Adv or Cmd7 to
leave the ERROR screen and return control to the program.

6 A check is again made for the use of Cmd7 to terminate the
program on line 217.

7 Line 230 displays the part data on the UPDATE screen.

10–4

WORKSTN Program Examples

8 Input is requested from the WORKSTN file on line 240. A ’B’ was
output in the first position of the WORKSTN output record and
will be returned in the first position of the WORKSTN input record
by the READ operation. The ’B’ will identify the WORKSTN
input record as belonging in the Input specifications on lines 70 -
80.

9 A check is again made for the use of Cmd7 to terminate the
program on lines 242 and 244.

10 The inventory file is updated on line 250.

11 The cycle is repeated until a Cmd7 is used to terminate the
program.

10.1.3 INVENTFM.FRM Screen Source Code
This is the Migration RPG source code that comprises the
INVENTFM.FRM screen module:

— The Screen specifications on lines 10, 100, and 300, have Y’s in
columns 27 and 28. This says that only the function and command
keys defined in the key masks in columns 64 - 79 are enabled for these
screens. Only Cmd7 (G) has been enabled on each of the screens. No
function keys are enabled in this program.

— The field names specified in columns 7 - 14 on the Description
specifications, such as lines 40 and 70, are treated as comments.
They are provided for information purposes only and do not compile in
the screen.

— On lines 40 and 140, the CODE field is defined as an input/output
(Y’s in columns 23 and 26) and protected field (Y in column 37). This
ensures that the data output to the WORKSTN screen in the CODE
field will be returned to the program and that it cannot be modified by
the user.

— On line 70, the Controlled Field Exit (column 35) and Auto Record
Advance (column 36) functions are both enabled. A Controlled Field
Exit requires that the user press a field termination key (Enter ,
Tab , Record Enter/Adv) to leave the field. The Auto Record Advance
terminates the screen and returns control to the program as soon as
the field is entered.

Cmd7 will also terminate the screen and return control to the program.

— On line 160 in the UPDATE screen, the part number (PN) is marked
as a protected field (Y in column 37). This ensures that the field value
will be returned to the program and that it cannot be modified by the
user. The UPDATE screen displays the part number field, but does not
permit it to be modified.

10–5

WORKSTN Program Examples

Example 10–3 WORKSTN Screen Example - INVENTFM.FRM

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*
* INVENTFM.FRM
* Screen for interactive inventory review and updates.
*

0010 SPARTNUMB 124 YY G
0020 D 17 132Y Y CINVENTORY UTILITY
0030 D 10 168Y CScreen ID:
0040 DCODE 1 179Y Y Y
0050 D 10 235Y Y CKEY SCREEN
0060 D 19 426Y CPart Number:
0070 DPN 3 446Y Y YY Y Y
0080 D 2324 1Y Y C[CMD7] to Exit

*
0100 SUPDATE 124 YY G
0110 D 33 1 1Y Y CINVENTORY UTILITY - UPDX
0120 DATE SCREEN
0130 D 10 168Y CScreen ID:
0140 DCODE 1 179Y Y Y
0150 D 19 3 1Y CPart Number:
0160 DPN 3 321Y Y Y Y
0170 D 23 5 1Y CPart Name:
0180 DPNAME 7 525Y Y Y Y
0190 D 23 6 1Y CWarehouse Code:
0200 DWHOUSE 2 625Y Y Y Y
0210 D 23 7 1Y CColor:
0220 DCOLOR 5 725Y Y Y Y
0230 D 23 8 1Y CWeight:
0240 DWEIGHT 3 825Y YD Y Y
0250 D 23 9 1Y CQuantity:
0260 DQTY 4 925Y YD Y Y
0270 D 2324 1Y Y C[CMD7] to Exit

*
0300 SERROR 124 YY G
0310 D 33 1 1Y Y CINVENTORY UTILITY - ERRX
0320 DOR SCREEN
0330 D 22 529Y Y Y
0340 D 7924 1Y Y CPress [Enter] to returnX
0350 D to the Part # screen or [CMD7] to exit the program.

— Lines 240 and 260 in the UPDATE screen define the numeric fields
WEIGHT and QTY. The D in the Data Type field (column 27) prevents
the user from entering any characters other than 0 - 9 in the field.

— The ERROR screen does not have any input fields. This screen is a
display only screen. The user must use a Enter , Enter/Record Adv , or
Cmd7 to terminate the screen and return control to the program.

10.1.4 Building the INVENT Program
The INVENT WORKSTN program can be compiled and linked using one
of the following sets of commands:

10–6

WORKSTN Program Examples

Example 10–4 BUILD INVENT

$ BUILD INVENT

The BUILD command will compile the INVENT.RPG program, the
INVENTFM.FRM screen format file, and then link the two object modules
to produce the INVENT.EXE executable image.

Example 10–5 Compile and Link INVENT

$ RPG INVENT
$ SFG INVENTFM
$ LINK INVENT, INVENTFM

The RPG command compiles the INVENT.RPG program. The SFG
command compiles the INVENTFM.FRM screen format file. The LINK
command links the two object modules to produce the INVENT.EXE
executable image.

10.2 Combine Primary WORKSTN Program Example
This section provides an example of a simple combine primary WORKSTN
program, INVENT_INQ.RPG. The program accesses the screens defined in
the INVENT_INQFM.FRM screen format file. The following three screen
formats are defined for the program:

• PARTNUMB

• DATA

• ERROR

The INVENT_INQ program displays inventory records from the
INVENT.DAT file. The program is an example of a display-only
application; the user is not allowed to update inventory information.
The PARTNUMB screen is used to retrieve the three-character part
number that is the key into the inventory file. The DATA screen is used
to display the inventory information if the specified part number is found.
The ERROR screen displays an error message if an invalid part number
is entered on the PARTNUMB screen. The program is terminated by
entering a Cmd7 from any of the screens.

The INVENT_INQ program uses the same indexed data file as the
previous example, INVENT.RPG. The data file is INVENT.DAT.

10.2.1 INVENT_INQ Example Components
The INVENT_INQ program is comprised of the following files. These
files can be found in the S3X$EXAMPLES directory. It is strongly
recommended that the files be copied to another directory before they
are used.

10–7

WORKSTN Program Examples

Table 10–2 INVENT_INQ Program Files

File Description

INVENT.COM Procedure used to recreate the INVENT.DAT file.

INVENT.DAT Indexed inventory data file.

INVENT.FDL Description file used to create INVENT.DAT.

INVENT.TXT Sequential version of INVENT.DAT. This file is used by the
INVENT.COM procedure to recreate the INVENT.DAT file. It
is recommended that this file not be modified.

INVENT_INQ.RPG Inventory inquiry program source code.

INVENT_INQFM.FRM Inventory inquiry program screen source code.

10.2.2 INVENT_INQ.RPG Source Code
This is the Migration RPG source code that comprises the
INVENT_INQ.RPG program:

— The WORKSTN file is defined on line 10 as a combined primary file.
The record length of 24 is chosen based on the longest WORKSTN
output buffer required.

— Line 20 shows the definition for the inventory file.

— The data layout for the inventory file is given in the data structure on
lines 140 through 200 and referenced in the input record on line 110.

— Lines 120 through 136 show the definition of the input records
provided by the WORKSTN screens. The first character in the
WORKSTN file record buffer is examined to see if it is ’A’ or ’B’.
The ’A’ and ’B’ are placed in the WORKSTN input record by the
WORKSTN screens. This first byte is used to provide a means for the
Input specifications to determine the last input screen.

— Line 136 provides a catch-all input record definition to allow the
program to process input records that do not have an ’A’ or ’B’
in position 1 of the input record. This functionality is needed when
returning control from the ERROR screen.

— Lines 400 through 490 show the specifications that output data to the
WORKSTN screens. Lines 410, 450, and 480 define the WORKSTN
screens. Data is placed in the WORKSTN record buffer on lines 420,
460, and 490. The ending positions for these fields match the end
positions for the output data fields in the WORKSTN Description
specifications. Output indicators in columns 23 - 31 determine which
screen is to be output on each cycle.

— Note the use of the 1P indicator on line 404 to ensure that a screen is
output during program startup.

10–8

WORKSTN Program Examples

Example 10–6 Combine Primary WORKSTN Program Example -
INVENT_INQ.RPG

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

H
* INVENT_INQ.RPG
* Program to display parts inventory records.
*
* Program uses a combine primary WORKSTN file.
*

0010 FPARTS CP F 24 WORKSTN
0020 FINVENT IC F 24R 3AI 1 DISK

*
0100 IINVENT 02
0110 I 1 24 DATA

*
0120 IPARTS 01 1 CA
0130 I 2 4 PN
0132 I 02 1 CB
0136 I 03

*
0140 IDATA DS
0150 I 1 3 PN
0160 I 4 10 PNAME
0170 I 11 12 WHOUSE
0180 I 13 17 COLOR
0190 I 18 200WEIGHT
0200 I 21 240QTY

*
0300 C KG SETON LR
0310 C 01NLR PN CHAININVENT 99

*
0400 OPARTS D 02NLR
0402 O OR 03NLR
0404 O OR 1P
0410 O K8 ’PARTNUMB’
0420 O PN 4
0440 OPARTS D 99N03NLR
0450 O K5 ’ERROR’
0460 O 22 ’No part by that number’
0470 OPARTS D 01N99NLR
0480 O K6 ’DATA’
0490 O DATA 25

— WORKSTN input and output are controlled by the program cycle.

• At program startup, the 1P indicator is on, so the PARTNUMB
screen is displayed.

• During the first cycle input phase, input is requested from the
WORKSTN file. An ’A’ is included in the first position of the
WORKSTN record returned by the PARTNUMB screen. This sets
on the 01 input indicator.

• Line 300 checks for entry of Cmd7 . If Cmd7 was entered, the
last record indicator (LR) is turned on. This will terminate the
program. The Cmd7 check is done every cycle because Cmd7 is a
valid entry from all of the program screens.

• If the program is not being terminated (LR) and the last screen
input was the PARTNUM screen (01), line 310 takes the part
number (PN) entered on the PARTNUMB screen and tries to locate
the associated part record in the inventory file.

10–9

WORKSTN Program Examples

• If the part is not found in the Inventory file, indicator 99 comes
on. This will result in the ERROR screen being displayed during
the output phase of the program cycle. If the part is found in the
inventory file, indicator 99 is not turned on. This results in the
part record being displayed on the DATA screen during the output
phase of the program cycle.

• The program now begins a new cycle. WORKSTN input is again
obtained during the input phase of the program cycle. The last
screen displayed determines what the next screen displayed will
be. Entry of a Cmd7 from any of the screens terminates the
program.

10.2.3 INVENT_INQFM.FRM Screen Source Code
This is the Migration RPG source code that comprises the
INVENT_INQFM.FRM screen module:

— The Screen specifications on lines 10, 100, and 300, have Y’s in
columns 27 and 28. This says that only the function and command
keys defined in the key mask in columns 64 - 79 are enabled for these
screens. Only Cmd7 (G) has been enabled on each of the screens. No
function keys are enabled in this program.

— The field names specified in columns 7 - 14 on the Description
specifications, such as lines 70 and 180, are treated as comments.
They are provided for information purposes only and do not compile in
the screen.

— On lines 40 and 140, the CODE field is defined as an input constant (Y
in column 23, C in column 56). The field is also defined as an output
field (Y in column 26) and a protected field (Y in column 37). This
ensures that the field value will be returned to the program and that
it cannot be modified by the user. These fields will appear as the first
character in the WORKSTN input record and are used to identify the
input record within the RPG program.

— On line 70, the Controlled Field Exit (column 35) and Auto Record
Advance (column 36) functions are both enabled. A Controlled Field
Exit requires that the user press a field termination key (Enter ,
Tab , Record Enter/Adv) to leave the field. The Auto Record Advance
terminates the screen and returns control to the program as soon as
field is entered.

Cmd7 will also terminate the screen and return control to the program.

— The DATA and ERROR screens do not have any input fields.
These screens are display only screens. The user must use a Enter ,

Enter/Record Adv , or Cmd7 to terminate the screen and return control
to the program.

10–10

WORKSTN Program Examples

Example 10–7 WORKSTN Screen Example - INVENT_INQFM.FRM

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

* INVENT_INQFM.FRM
* Screen for interactive display of inventory records.
*

0010 SPARTNUMB 124 YY G
0020 D 17 132Y Y CINVENTORY INQUIRY
0030 D 10 168Y CScreen ID:
0040 DCODE 1 179Y Y Y CA
0050 D 10 235Y Y CKEY SCREEN
0060 D 19 426Y CPart Number:
0070 DPN 3 446Y Y YY Y Y
0080 D 2324 1Y Y C[CMD7] to Exit

*
0100 SDATA 124 YY G
0110 D 31 1 1Y Y CINVENTORY INQUIRY - DATX
0120 DA SCREEN
0130 D 10 168Y CScreen ID:
0140 DCODE 1 179Y Y Y CB
0150 D 19 3 1Y CPart Number:
0160 DPN 3 321Y Y
0170 D 23 5 1Y CPart Name:
0180 DPNAME 7 525Y Y Y
0190 D 23 6 1Y CWarehouse Code:
0200 DWHOUSE 2 625Y Y Y
0210 D 23 7 1Y CColor:
0220 DCOLOR 5 725Y Y Y
0230 D 23 8 1Y CWeight:
0240 DWEIGHT 3 825Y Y Y
0250 D 23 9 1Y CQuantity:
0260 DQTY 4 925Y Y Y
0270 D 7924 1Y Y CPress [Enter] to returnX
0280 D to the Part # screen or [CMD7] to exit the program.

*
0300 SERROR 124 YY G
0310 D 33 1 1Y Y CINVENTORY INQUIRY - ERRX
0320 DOR SCREEN
0330 D 22 529Y Y Y
0340 D 7924 1Y Y CPress [Enter] to returnX
0350 D to the Part # screen or [CMD7] to exit the program.

Example 10–8 BUILD INVENT_INQ

$ BUILD INVENT_INQ

The BUILD command will compile the INVENT_INQ.RPG program, the
INVENT_INQFM.FRM screen format file, and then link the two object
modules to produce the INVENT_INQ.EXE executable image.

10.2.4 Building the INVENT_INQ Program
The INVENT_INQ WORKSTN program can be compiled and linked using
one of the following sets of commands:

10–11

WORKSTN Program Examples

Example 10–9 Compile and Link INVENT_INQ

$ RPG INVENT_INQ
$ SFG INVENT_INQFM
$ LINK INVENT_INQ, INVENT_INQFM

The RPG command compiles the INVENT_INQ.RPG program. The
SFG command compiles the INVENT_INQFM.FRM screen format
file. The LINK command links the two object modules to produce the
INVENT_INQ.EXE executable image.

10.3 TEMPLATE Examples
The Migration RPG Compiler kit provides two WORKSTN template
programs. These programs are intended to serve as interactive file
maintenance and inquiry templates. The programs are more sophisticated
than the examples described in this chapter.

The programs are TEMPLATE_MAINT and TEMPLATE_INQ.
Their components are listed in the following sections. It is strongly
recommended that these files be copied to another location before they
are used.

The template programs are well documented with internal comments.
They can be used to quickly develop interactive file inquiry and
maintenance programs. MSI also provides RPG consulting services. The
template programs provide an overview of the quality of our programming
services.

10.3.1 TEMPLATE_INQ Example Components
The TEMPLATE_INQ program is comprised of the following files. These
files can be found in the S3X$EXAMPLES directory. It is strongly
recommended that the files be copied to another directory before they
are used.

Table 10–3 TEMPLATE_INQ Program Files

File Description

TEMPLATE.COM Procedure used to recreate the TEMPLATE.DAT file.

TEMPLATE.DAT Indexed template data file.

TEMPLATE.FDL Description file used to create TEMPLATE.DAT.

TEMPLATE.TXT Sequential version of TEMPLATE.DAT. This file is used
by the TEMPLATE.COM procedure to recreate the
TEMPLATE.DAT file. It is recommended that this file not
be modified.

TEMPLATE_INQ.COM Inquiry template command procedure.

TEMPLATE_INQ.RPG Inquiry template program source code.

TEMPLATE_INQFM.FRM Inquiry template program screen source code.

10–12

WORKSTN Program Examples

10.3.2 TEMPLATE_MAINT Example Components
The TEMPLATE_MAINT program is comprised of the following files.
These files can be found in the S3X$EXAMPLES directory. It is strongly
recommended that the files be copied to another directory before they are
used.

Table 10–4 TEMPLATE_MAINT Program Files

File Description

TEMPLATE.COM Procedure used to recreate the TEMPLATE.DAT file.

TEMPLATE.DAT Indexed template data file.

TEMPLATE.FDL Description file used to create TEMPLATE.DAT.

TEMPLATE.TXT Sequential version of TEMPLATE.DAT. This file is
used by the TEMPLATE.COM procedure to recreate
the TEMPLATE.DAT file. It is recommended that this
file not be modified.

TEMPLATE_MAINT.COM Maintenance template command procedure.

TEMPLATE_MAINT.RPG Maintenance template program source code.

TEMPLATE_MAINTFM.FRM Maintenance template program screen source code.

10.4 Address Book Interactive Program Example
The Migration RPG Compiler Kit includes an address book program
example. This is an interactive RPG program that was developed using
the TEMPLATE_MAINT template files. The program maintains an
address book file.

The ADDRESS_BOOK program is well documented with internal
comments.

10.4.1 Address Book Example Components
The Address Book program is comprised of the following files. These
files can be found in the S3X$EXAMPLES directory. It is strongly
recommended that the files be copied to another directory before they
are used.

Table 10–5 Address Book Program Files

File Description

ADDRESS_BOOK.COM Procedure used to execute the Address Book program.

ADDRESS_BOOK.DAT Indexed Address Book data file.

ADDRESS_BOOK.FDL Description file used to create ADDRESS_BOOK.DAT.

ADDRESS_BOOK.RPG Address Book program source code.

ADDRESS_
BOOKFM.FRM

Address Book screen format source code.

10–13

Index

*INP • 8–2, 8–3
*OUT • 8–2, 8–3
*DETC • 9–1
*MODE • 8–2, 8–3
*SIZE • 8–2
*CANCL • 9–1
*GETIN • 9–1
*opcode • 8–2
*OPCODE • 8–2
*RECORD • 8–2
*STATUS • 8–2

A
Adjust/Fill • 5–9
Alarm • 3–3
Allow Lowercase • 3–2
Alphabetic data type • 5–7
Alphanumeric data type • 5–7
AND

Input specifications • 2–7
Output specifications • 2–11

Auto Record Enter/Advance • 5–10

B
Blank after

Output specifications • 2–13
Blink cursor • 3–4
Blink Field • 5–12
block mode • 1–1
Boundary Indicator • 4–5

C
Calculation specifications

WORKSTN • 2–10
Clearing a display • 3–2
Code example

program • 10–2, 10–8
screen • 10–5, 10–10

Column • 5–2

132 column displays
100 to 132 Two Digit Representation • 4–2, 5–2

132-Column Format • 3–7
Column Indicators • 5–13
Column separator simulation • 1–7
Command and function key definitions • 1–2 to 1–4
Command key definitions • 7–1
Command keys • 3–4, 7–1

defining • 7–2
INFDS • 7–3
Key Mask • 3–8

Command key table • 7–1
Comments • 3–1, 4–1, 5–1

file description specification • 2–4
Input specifications • 2–8, 2–9
Output specification • 2–12, 2–14

CONSOLE
not allowed • 1–2, 2–1

Constant Data • 5–14
Constant input • 5–6
Constant or Edit Word

Output specification • 2–13
Constant Type • 5–14
Continuation lines • 2–3, 2–4

FMTS • 2–5
ID • 2–5
IND • 2–5
INFDS data structure • 2–5
INFSR subroutine • 2–5
NUM • 2–5
SAVDS • 2–5
specifying a screen format file • 2–5
Variable start line • 2–5
WORKSTN device files

entries • 2–4
options • 2–4

Control break indicators
Input specifications • 2–9

Controlled Field Exit • 5–10
CRT

not allowed • 1–2, 2–1
Cursor control • 5–9

right-to-left Display • 3–7

Index–1

Index

D
Data formats

Input specification • 2–8
Output specification • 2–13

Data Type • 5–6
A

alphabetic • 5–7
B

alphanumeric • 5–7
D

decimal • 5–7
N

numeric • 5–7
S

signed numeric • 5–7
Z

right-to-left data type • 5–7
Decimal data type • 5–7
Decimal positions

Input specification • 2–9
Defining a help area • 4–2, 4–3
Demand file • 6–1
Description specification • 5–1

Adjust/Fill • 5–9
Auto Record Enter/Advance • 5–10
Blink Field • 5–12
Column • 5–2
Column Indicators • 5–13
comments • 5–1
Constant Data • 5–14
Constant Type • 5–14
Continuation • 5–16
Controlled Field Exit • 5–10
Data Type • 5–6
Enable Dup • 5–10
Field Length • 5–2
Field Name • 5–1
High Intensity • 5–11
Horizontal Position • 5–2
Identification • 5–1
Input Data • 5–6
Line Number • 5–1, 5–2
Lowercase • 5–13
Mandatory Entry • 5–8
Mandatory Fill • 5–7
Nondisplay Field • 5–12
Output Data • 5–3
Position Cursor • 5–9
Protect Field • 5–11

Description specification (cont’d)

Reverse Image • 5–12
Row • 5–2
Self-Check • 5–8
Underline • 5–13

Device code • 2–3
Displaying help

Boundary Indicator • 4–5
Restore Application Format • 4–4
suppressing a help screen • 4–4

Display width
specifying • 3–7

DSPLY
not advised • 1–2, 2–1

Dup fields • 5–10

E
Edit codes

Output specifications • 2–13
Enable command keys • 3–4
Enable Dup • 5–10
Enable function keys • 3–3
End position

output field • 2–13
Output specifications • 2–13

EOF • 6–2
WORKSTN • 6–2

Erase input fields • 3–5
Error trapping

INFDS data structure • 2–5
INFSR subroutine • 2–5

Examples
building a WORKSTN program • 10–6, 10–11
combined demand • 10–1
combined primary • 10–7
compiling a WORKSTN program • 10–6, 10–11
Help screen • 4–6
Help specification • 4–6
INFDS data structure

IBM compatible • 8–3
linking a WORKSTN program • 10–6, 10–11
programs • 10–1
screens • 10–1
WORKSTN File specification • 2–6
WORKSTN Input specification • 2–10

Exception handling
INFDS data structure • 2–5
INFSR subroutine • 2–5

Index–2

Index

Exception processing
INFSR subroutine • 9–1

EXCPT name
Output specification • 2–12

EXCPT opcode • 2–2, 2–10
examples • 1–7

F
field

Output specification • 2–12
Field attributes

Blink Field • 5–12
Column Indicators • 5–13
High Intensity • 5–11
Lowercase • 5–13
Nondisplay Field • 5–12
Protect Field • 5–11
Reverse Image • 5–12
Underline • 5–13

Field editing

See also Workstation programs
invalid characters • 1–6
keys • 1–5

Field indicators
checking the condition of data fields

Input specifications • 2–9
conditioning input data

Input specifications • 2–9
Field Length • 5–2
Field name • 5–1

Input specification • 2–9
Output specification • 2–12

Field record relation indicators
conditioning input data

Input specifications • 2–9
controlling data extraction

Input specifications • 2–9
Input specifications • 2–9

Fields
defining start and end positions • 2–8
Input

specifying
decimal positions • 2–9

length • 5–2
naming • 2–9
specifying

data format • 2–8

Field start and end positions • 2–8
File conditioning indicator • 2–3
File description specification

comments • 2–4
File designation • 2–2

demand • 2–2
primary • 2–2
WORKSTN • 2–2

File format • 2–2
File names • 2–2

Input specification • 2–7
Output specification • 2–11

Files
demand WORKSTN • 6–2

File specification
continuation lines • 2–3
device code • 2–3
entries • 2–1
file conditioning indicator • 2–3
file designation • 2–2
file format • 2–2
file name • 2–2
file type

WORKSTN • 2–2
record length • 2–3
WORKSTN • 2–1

File type • 2–2
First cycle

read
WORKSTN • 2–9

first page indicator
WORKSTN • 6–1

FMTS • 2–4, 2–5
Function keys • 3–3, 7–1, 7–4

defining • 7–4
INFDS • 7–4
INFDS data structure • 8–1
INFSR • 7–4
INFSR subroutine • 9–1
key mask • 7–4
Key Mask • 3–8

Function Keys
INFDS • 7–5

H
Help area

Lower Right Boundary • 4–3
Upper Left Boundary • 4–2

Index–3

Index

Help screen format name • 4–2
Help screen processing • 4–5
Help screens

description • 1–1
Help specification • 4–1

Boundary Indicator • 4–5
comments • 4–1
format name • 4–2
Identification • 4–1
Lower Right Boundary • 4–3
Restore Application Format • 4–4
Suppress Selection Indicator • 4–4
Upper Left Boundary • 4–2

Help Specification
Line number • 4–1

Help support
workstation programs • 1–6 to 1–7

High Intensity • 5–11
Horizontal Position • 5–2

I
ID • 2–5
IND • 2–5
Indicator-based output • 5–3
Indicators

conditioning
Output fields • 2–12
Output records • 2–11

field
Input specifications • 2–9

field record relation
Input specifications • 2–9

K • 7–1, 7–3
LR • 6–2
1P • 2–9
record-identifying • 2–7
screen • 7–1, 7–3
WORKSTN • 7–1, 7–3

INFDS • 2–4
function keys • 7–4, 7–5
*STATUS • 7–3, 7–4, 7–5

INFDS data structure • 8–1
coding • 8–1
continuation lines • 2–5
declaring • 2–5
function keys • 8–4
IBM compatibility • 8–2
IBM compatible

INFDS data structure
IBM compatible (cont’d)

coding • 8–3
IBM RPG II compatibility • 8–1
INFSR subroutine • 8–4
*INP • 8–2, 8–3
*MODE • 8–2, 8–3
*OPCODE • 8–2
*OUT • 8–2, 8–3
*RECORD • 8–2
*SIZE • 8–2
*STATUS • 8–2
using • 8–4
WORKSTN file operations • 8–1

INFSR subroutine • 9–1
*CANCL • 9–1
continuation lines • 2–5
declaring • 2–5
*DETC • 9–1
Function keys • 7–4
*GETIN • 9–1
INFDS data structure • 8–4
return options • 9–1
WORKSTN file operations • 9–1

Input
constant • 5–6
Lowercase • 5–13

Input control
Auto Record Enter/Advance • 5–10
Controlled Field Exit • 5–10
Protect Field • 5–11
Record Enter/Advance • 5–10

Input data • 5–6
Adjust/Fill • 5–9
Constant Data • 5–14
Data Type • 5–6
editing data • 5–6, 5–8, 5–16
Enable Dup • 5–10
Mandatory Entry • 5–8
Mandatory Fill • 5–7
Self-Check • 5–8, 5–16

Input fields
erase • 3–5
override • 3–5
return • 3–3
suppress • 3–6

Input specification
AND • 2–7
comments • 2–8, 2–9
control break indicators • 2–9
data format • 2–8

Index–4

Index

Input specification (cont’d)

decimal positions • 2–9
field entries • 2–8
field indicators • 2–9
field name • 2–9
field record relation indicators • 2–9
field start and end positions • 2–8
file name • 2–7
identifying record types • 2–7
matching fields • 2–9
option • 2–7
OR • 2–7
record entries • 2–6
record identification conditions • 2–8
record-identifying indicators • 2–7
sequence • 2–7
sequence number • 2–7
specifying

alphabetic sequence code • 2–7
data formats • 2–8
file names • 2–7
numeric sequence code • 2–7
record identification conditions • 2–8
sequence code • 2–7

WORKSTN • 2–6

K
KEYBORD

not allowed • 1–2, 2–1
key mapping • 1–2
Key Mask • 3–8
Keypad diagram • 1–5 to 1–6
Keys

command • 7–1
function • 7–1

K indicators • 7–1, 7–3

L
Line number • 5–2

File specification • 2–1
Help specification • 4–1
Input specification • 2–6, 2–8
Output specification • 2–11, 2–12
Screen specification • 3–1, 5–1

Lines to clear • 3–2

logicals • 2–2
Lowercase • 3–2, 5–13
Lower Right Boundary • 4–3
LR • 6–2

M
Mandatory Entry • 5–8
Mandatory field entry • 5–7, 5–8
Mandatory Fill • 5–7
Matching fields

Input specifications • 2–9
MIC message members • 5–2, 5–3, 5–14, 5–15
Modulus 10 self-check • 5–8, 5–16, 5–17
Modulus 11 self-check • 5–8, 5–16, 5–17

N
Nondisplay Field • 5–12
NUM • 2–5
Numeric data type • 5–7
Numeric sequence code

sequence option • 2–7

O
Object files

help screens • 1–6
Option

Input specifications • 2–7
OR

Input specifications • 2–7
Output specifications • 2–11

Output
indicator-based • 5–3

Output data • 5–3
Constant Data • 5–14
Continuation • 5–16

Output specification
AND • 2–11
Blank after • 2–13
comments • 2–12, 2–14
Constant or Edit Word • 2–13
data format • 2–13
edit codes • 2–13
end position • 2–13

Index–5

Index

Output specification (cont’d)

EXCPT name • 2–12
field • 2–12
field name • 2–12
file name • 2–11
indicators

fields • 2–12
records • 2–11

OR • 2–11
record • 2–11
record type • 2–11
special words • 2–13
WORKSTN • 2–10
WORKSTN screen format names • 2–13

Override fields • 3–5

P
1P • 2–9

WORKSTN • 6–1
PAGE • 2–13
PAGE1 - PAGE7 • 2–13
Position Cursor • 5–9
Positioning fields

Column • 5–2
Horizontal Position • 5–2
Line Number • 5–2
Row • 5–2

Primary file • 6–1
processing order

Help screens • 4–5
Protect Field • 5–11

R
Read

first cycle • 2–9
READ opcode • 2–2, 2–9, 2–10

examples • 1–7
record

Output specification • 2–11
Record Enter/Advance • 5–10
Record identification codes

Input specifications • 2–8
Record identification conditions

identifying record types • 2–8
Record-identifying indicators

conditioning input data • 2–7

Record-identifying indicators (cont’d)

Input specifications • 2–7
Record length • 2–3
Records

identifying types • 2–7
specifying

record identification conditions • 2–8
types

defining the ordering sequence • 2–7
Record types

defining the ordering sequence • 2–7
identifying • 2–7
Output specifications • 2–11
specifying

record identification conditions • 2–8
Restore Application Format • 4–4
Return Code

IBM compatibility • 8–3
Return input • 3–3
Reverse Image • 5–12
Right-to-left data type • 5–7
Right-to-left Display • 3–7
Row • 5–2

S
SAVDS • 2–5
Screen Format

creation • 1–2
modification • 1–2

Screen format file
name • 1–1

Screen format name • 3–1
Output specifications • 2–13

Screen formats
continuation lines • 2–5
description • 1–1

Screen format specifications • 1–1
Screen handling • 1–1
Screen indicators • 7–1, 7–3
Screen specification • 3–1

allow lowercase • 3–2
blink cursor • 3–4
132-Column Format • 3–7
command keys • 7–2, 7–4
comments • 3–1
enable command keys • 3–4
enable function keys • 3–3
erase input fields • 3–5
format name • 3–1

Index–6

Index

Screen specification (cont’d)

Identification • 3–1
Key Mask • 3–8
Line Number • 3–1
lines to clear • 3–2
override fields • 3–5
return input • 3–3
right-to-left Display • 3–7
sound alarm • 3–3
start line • 3–1
suppress input • 3–6
variable start line • 3–1

Self-Check • 5–8, 5–16
Sequence codes • 2–7

assigning a numeric code • 2–7
sequence number • 2–7
specifying

alphabetic • 2–7
numeric • 2–7
sequence option • 2–7

Sequence Number
Input specification • 2–7

SFG • 1–1
Signed numeric data type • 5–7
SLN • 2–4
Sound Alarm • 3–3
Special words

Output specification • 2–13
Specification identification

Description specification • 5–1
File specification • 2–2
Help specification • 4–1
Input specification • 2–7, 2–8
Output specification • 2–11, 2–12
Screen specification • 3–1

Specifications
Calculation • 2–10
Description • 5–1
Help • 4–1
Input • 2–1, 2–6
Output • 2–10
RPG program • 2–1
Screen • 3–1
screen format • 1–1

Start line • 3–1
*STATUS

command keys • 7–3
function keys • 7–4, 7–5

Suppress input • 3–6
Suppress Selection Indicator • 4–4

SYS$COMMAND • 2–2
SYS$OUTPUT • 2–2

T
100 to 132 Two Digit Representation • 4–2, 5–2

U
UDATE • 2–13
$UDATE • 2–13
UDAY • 2–13
$UDAY • 2–13
$UMNTH • 2–13
UMONTH • 2–13
Underline • 5–13
Upper Left Boundary • 4–2
UYEAR • 2–13
$UYEAR • 2–13

V
Variable start line • 2–5, 3–1, 3–2

W
Workstation key assignments • 1–2 to 1–6
Workstation programs

column separator simulation • 1–7
command and function key definitions • 1–2 to 1–4
field editing keys • 1–5
field editing within a screen • 1–6
help support • 1–6 to 1–7
interacting with • 1–2
invalid command and function keys • 1–6
keypad diagram • 1–5 to 1–6
workstation key assignments • 1–2 to 1–6

Workstation screens
field editing within a screen • 1–6

WORKSTN • 1–1
Calculation specifications • 2–10
code example • 10–1, 10–7

RPG • 10–2, 10–8
screen • 10–5, 10–10

Index–7

Index

WORKSTN (cont’d)

continuation lines • 2–3, 2–4
FMTS • 2–4
INFDS • 2–4
INFSR • 2–4
SLN • 2–4

CRT • 1–1
demand file • 6–1, 6–2
device code • 2–3
DSPLY • 1–2, 2–1
EOF • 6–2
examples • 1–7, 10–1
file conditioning indicator • 2–3
file designation • 2–2
file format • 2–2
file name • 2–2
file processing • 6–1
File specification • 2–1
File types • 2–2
Input specifications • 2–6
limitations • 1–2, 2–1
Output specifications • 2–10
1P • 6–1

primary file • 6–1
read

first cycle • 2–9
record length • 2–3
return codes • 8–2
RPG program specifications • 2–1
screen example • 10–5, 10–10
specifying

demand • 2–2
primary • 2–2

terminal • 1–1
VTxxx • 1–1

WORKSTN device
return codes

INFDS data structure • 2–5
WORKSTN files

continuation lines
entries • 2–4
options • 2–4

WORKSTN screen format names
Output specifications • 2–13

Index–8

